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Abstract  

The fact that Hosmer-Lemeshow test is based on formation of groups for variables values poses a number of questions. One of 

these is how many groups should be formed? Will a different number of groups change the final result? Another is to what extent 

the power of the test is affected by factors such as sample size and population distribution characteristics?  The main aim of this 

paper is to examine the performance of Hosmer-Lemeshow test when the fitted logistic model is the incorrect model under some 

factors such as the changing number of groups, sample size and population distribution that is expected to affect its performance to 

see whether its performance in case of incorrect model better than its performance in the case of correct model. This is 

accomplished through techniques of analysis and simulation using RStudio package.The analytical approach is composed of 

conduction of Hosmer-Lemeshow test, formation of groups, etc, while the simulation approach is entirely based on the ideas of 

data generation based on specified circumstances, sample selection steps, iterations steps and so on. The results concluded that 

when 10 groups are formulated the value of the test statistic is increased with sample size and when the number of groups is 

changed the test performance is affected by changing the number of groups especially when the sample size is small. Moreover, 

when the simulation technique is used to check for the effect of repeated sample and to see whether the covariate’s distribution and 

the sample size will affect the power of the test or not and to what extent, it has been revealed that the power of the test increases 

with the increase in both the sample size and the variance value and accordingly its performance in case of the incorrect model and 

through its interaction with the control factors is better compared to its performance in the case of the correct model.  

Keywords: Hosmer-Lemeshow Test, Repeated sample, Incorrect Model, Simulation 

 

Introduction 

The statistical analysis of dichotomous outcome variables is 

often interpreted with the use of logistic regression methods 

(Kleinbaum, 1994). The logistic model is widely used in 

public health, medicine, epidemiology and other fields. 

Logistic regression sometimes called the logistic model or 

logit model, analyzes the relationship between one or more 

independent variables and a categorical dependent variable, 

and estimates the probability of occurrence of an event by 

fitting data to a logistic curve. The goal of an analysis using 

this method is the same as that of any model-building 

technique used in statistics: to find the best fitting model to 

use it to determine relations or for prediction purposes. 

Suppose that we have n binary observations of the 

form𝑦𝑖,𝑖 =  1,2, … , 𝑛. Let Y denote a dichotomous outcome 

variable, which may assume values "1" if the event occurs 

and "0" otherwise. Let the vector 𝑥′= (𝑥1,𝑥2,…,𝑥𝑝) denote a 

set of 𝑝 predictor variables. Let the conditional probability 

that the outcome is present be denoted by 𝑃(𝑌 = 1|𝑥) =

𝜋(𝑥). The logistic model which relates the probability of the 

event occurring to the predictor variables x is given by: 

 

𝑃(𝑌 = 1|𝑥) =  
𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝

1+𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝
= 𝜋(𝑥)                                

(1) 

And thus 

𝑃(𝑌 = 0|𝑥) = 1 − 𝜋(𝑥) 

After performing the logit transformation on π(x) in 

equation (1) we obtain the following multiple logistic 

regression models: 

𝑔(𝑥) = 𝑙𝑜𝑔𝑖𝑡[𝑥(𝜋)] = 𝑙𝑛 [
𝜋(𝑥)

1−𝜋(𝑥)
] = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝      

(2) 

The variables in 𝑥′(𝑥1, 𝑥2, … 𝑥𝑝) can be discrete, continuous 

or binary. In this research, the situation to be considered is 

the univariate situation where 𝑝 = 1 predictor variable, and 

thus 𝒙′ = (𝒙𝟏).  
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Consequently, equation (1) becomes: 

   𝜋(𝑥) =
𝒆𝜷𝟎+𝜷𝟏𝒙

𝟏+𝒆𝜷𝟎+𝜷𝟏𝒙                             

(3)  

While the logit of the simple logistic regression model is 

given by the equation: 

 𝑔(𝑥) = 𝑙𝑛 [
𝜋(𝑥)

1−𝜋(𝑥)
] = 𝛽0 + 𝛽1𝑥                      (4) 

Taking into consideration the term logit, it is defined as the 

natural logarithm of the odds – the term that logistic 

regression derives its name from. The importance of this 

transformation is that 𝑔(𝑥) has many of the desirable 

properties of a linear regression model. The logit, 𝑔(𝑥) is 

linear in its parameters, may be continuous, and may range 

from -∞ to ∞, depending on the range of 𝑥. The inverse logit 

function in equation (3) give us the probabilities of events 

we need, while the logit function in equation (4) gives us the 

linear function that relates outcomes to the variables. 

The linear logistic model is a member of the class of 

generalized linear models (Nelder and Wedderburn, 1972). 

This class of generalized models allows 𝜋(𝑥) to be related to 

the linear component (𝛽0 + 𝛽1𝑥) by the use of a logistic link 

function. The link function is the function of dependent 

variable that yields a linear function of the independent 

variables. In the case of a linear regression model, it is the 

identity function, since the dependent variable, by definition, 

is linear in the parameters. In the logistic regression model 

the link function is the logit transformation 𝑔(𝑥). 

After fitting a model to the observed data, one of the 

essential steps is to investigate how will the proposed model 

fits the observed data. One method which is used to 

determine the suitability of the fitted logistic model is 

goodness of fit test. In logistic regression model there are 

many goodness of fit tests proposed all have individual 

advantages and disadvantages (Tsiatis, 1980). 

Hosmer and Lemeshow (1980) has introduced a test for 

goodness of fit for logistic regression model depending on 

dividing the variables values into groups according to the 

estimated probabilities obtained from the fitted logistic 

model and then compares observed and expected 

probabilities within these groups. The idea applies the 

concept of the contingency table but creates the table based 

on a partition of the estimated probability of positive 

response 𝜋̂𝑖 into 10 groups.  

For the 𝑦 = 1row, estimates of the expected values are 

obtained by summing the estimated probabilities over all 

subjects in a group. For the 𝑦 = 0row, the estimated 

expected value is obtained by summing, over all subjects in 

the group, one minus the estimated probability. 

These groups are often referred to as "deciles of risk". This 

term comes from health sciences research where the 

outcome 𝑦 = 1often represents the occurrence of some 

disease (Hosmer and Lemeshow, 2000). The first group 

contains approximately 𝑛/𝐺 subjects having the smallest 

estimated probabilities, the second group contains 

approximately 𝑛/𝐺 subjects having the second smallest 

estimated probabilities, and the last group contains 

approximately 𝑛/𝐺 subjects having the largest estimated 

probabilities. Where 𝑛 represents the size of the sample. 

A formula defining the calculation of Hosmer-Lemeshow 

test statistic is as follow: 

 

𝐶̂ = ∑ ∑
(𝑜𝑘𝑔 − 𝑒𝑘𝑔)

2

𝑒𝑘𝑔

𝐺

𝑔=1

1

𝑘=0

 

 

Where:𝑜𝑘𝑔 is the observed frequency of subjects who have 

had the event occur and not occur in each group 𝑔 (𝑔 =

1,2, ⋯ , 𝐺). 𝑒𝑘𝑔 is the expected frequency of subject who 

have had the event occur and not occur in each group 𝑔. 

In a previous paper written by the same author under the 

title of: (The performance of Hosmer – Lemeshow test in 

case of the correct model) the focus was on the performance 

of the Hosmer – Lemeshow goodness of fit test when the 

logistic regression model is the correct one, where it 

examined the performance under factors such as changing 

the number of groups, sample size and population 

distribution. The results of analysis and simulation showed 

that the test performance was not affected by changing those 

factors.  

Objectives 

The main aim of this paper is to examine the performance of 

Hosmer-Lemeshow test when the fitted logistic model is the 

incorrect model under some factors expected to affect its 

magnitude such as the changing number of groups, sample 

size and population distribution to see whether its 

performance in case of incorrect model better than its 

performance in the case of correct model. 
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Method and Materials 

The data were generated using the RStudio System for 

Windows (version 1.1.444). A single predictor variable was 

initially generated using a random function in RStudio. The 

logistic model fit was the incorrect model. This means that 

our model is incorrectly specified. To examine the 

performance of Hosmer-Lemeshow test, two aspects of the 

model are considered; the distribution of the covariate, i.e. 

various distributions, and the values of the coefficients, the 

coefficients are chosen to assure sufficiency to allow 

estimation.  

The most effective way of achieving the aforementioned 

goal was to design a layout in a factorial arrangement, so 

that patterns or differences might be discerned between 

variations of the factors. 

 

The factors under consideration that were predetermined to 

vary are the following: 

 

1. The distribution of the predictor variable X (three levels: 

standard normal or normal or uniform) 

2. The value of the variance of the predictor variable (two 

levels: 1 or 2) 

3. The sample size of the generated data sets (four levels: 50, 

100, 200, 500) 

4. The parameters used to generate the logistic data (two 

parameters: 𝛽0 = 0, 𝛽1 = 1) 

 

To determine the behavior of the test statistic on data sets 

having predictor variables with a skewed distribution, the 

predictor variable was generated under the chi-squared 

distribution with: 

1. A value of variance of 2 or 4. 

2. Values of parameters as:𝛽0 = −0.85, −2.5, 𝛽1 = 1.These 

parameters are used to generate logistic data. 

Tables I, II and III best illustrate the overall layout of the 

factorial arrangement as well as the one additional special 

case. 

 

 

 

 

 

 

 

Table I. Factorial arrangement for generated data 

Standard Normal Distribution 

Variance (x)=1 

𝛽0 = 0 𝛽1 = 1 

N 

50,100,200,500 

Normal Distribution 

Variance (x)=1 Variance (x)=2 

𝛽0 = 0 𝛽1 = 1 𝛽0 = 0 𝛽1 = 1 

n 

50,100,200,500 

n 

50,100.200.500 

Uniform Distribution 

Variance (x)=1 Variance (x)=2 

𝛽0 = 0 𝛽1 = 1 𝛽0 = 0 𝛽1 = 1 

N 

50,100,200,500 

n 

50,100,200,500 

 

 

 

Table II. Special case for generated data from skewed 

distribution 

Chi-Squared Distribution 

Variance (x)=2 Variance (x)=4 

𝛽0 = −0.85 𝛽1 = 1 𝛽0 = −2.5 𝛽1 = 1 

N 

50,100,200,500 

n 

50,100,200,500 
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Table III. Enter simulation design 

Settings Covariate 

Distribution 

Sample 

Size 

𝛽0 𝛽1 

 

 

1 

 

 

N (0 , 1) 

 

50 0 1 

100 0 1 

200 0 1 

500 0 1 

 

 

2 

 

 

N (0.73 , 1) 

 

50 0 1 

100 0 1 

200 0 1 

500 0 1 

 

 

3 

 

 

N (0.73 , 2) 

50 0 1 

100 0 1 

200 0 1 

500 0 1 

 

 

4 

 

 

U (-1 , 2.46) 

50 0 1 

100 0 1 

200 0 1 

500 0 1 

 

 

5 

 

 

U (-1.72 , 3.18) 

 

50 0 1 

100 0 1 

200 0 1 

500 0 1 

 

 

6 

 

 

𝑋(1)
2  

50 -0.85 1 

100 -0.85 1 

200 -0.85 1 

500 -0.85 1 

 

 

7 

 

 

𝑋(2)
2  

 

50 -2.5 1 

100 -2.5 1 

200 -2.5 1 

500 -2.5 1 

 

The generated random predictor variables were controlled 

by a seed value, which was arbitrarily chosen. The given 

seed was used to obtain the first observation in the stream of 

the random numbers and reproduce results i.e.it produces the 

same sample again and again (RStudio Software, 2009). 

When we generate random numbers without set seed 

function, it will produce different samples at different time 

of execution.  For each setting illustrated in Table III, a data 

set with 1000 observations was generated to build 4 separate 

data set of size 50,100,200 and 500. 

Let 𝑥𝑠1, 𝑥𝑠2, … , 𝑥𝑠𝑛 denote the elements of a randomly 

generated random variable, which will be taken to be the 

predictor variable in the setting 2 up to 5. Moreover, 

Let 𝑥𝑠𝑛~ N(0.73,𝜎𝑣
2) for 𝑠 = 2,3 denote the settings for the 

predictor variable generated from a normal distribution, such 

that 𝑥𝑠𝑛 has a mean of 0.73, and variance 𝜎𝑣
2. Let 

𝑥𝑠𝑛~𝑈(𝑎, 𝑏) for 𝑠 = 4,5 denote the settings for the predictor 

variable generated from a uniform distribution on the 

interval between 𝑎 and 𝑏, such that 𝑥𝑠𝑛also has a mean of 

0.73, and variance 𝜎𝑣
2. The sample size of the data set is 

denoted by: n = 50, 100, 200, and 500.  Also 𝜎𝑣
2 = 𝑣, where 

v = 1, 2 corresponds to the variance size. The simulation 

process is explained in details as follows: 

1. Taking into consideration𝑥𝑠𝑛~𝑁(0.73, 𝜎𝑣
2), 𝑥𝑠𝑛 the data 

generation process is implemented  as follows: 

𝑢 = 0.73, 𝜎2 = 𝜎𝑣
2, 𝑠𝑒𝑒𝑑 = 𝑠𝑒 

𝑥1𝑠𝑛 = 𝑢 + [√𝜎𝑣
2] × 𝑁𝑠𝑒(0,1) 

               𝑥𝑠𝑛 =

𝑟𝑜𝑢𝑛𝑑(𝑥1𝑠𝑛)𝑤ℎ𝑖𝑐ℎ 𝑟𝑜𝑢𝑛𝑑𝑠𝑥1𝑠𝑛𝑡𝑜 𝑜𝑛𝑒 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑜𝑖𝑛𝑡  

Where:𝑁𝑠𝑒(0,1): is a randomly generated number from the 

standard normal distribution and the seed value is used to 

obtain the first observation in the stream of the random 

number. 

2. Regarding 𝑥𝑠𝑛~𝑈(𝑎, 𝑏), 𝑥𝑠𝑛the data generation was carried 

out through a transformation process of a random variable 

which was generated from a Uniform distribution on the 

interval between 𝑎 and 𝑏 as follows: 

𝑢 = 0.73, 𝜎2 = 𝜎𝑣
2, 𝑠𝑒𝑒𝑑 = 𝑠𝑒 

𝑥1𝑠𝑛 = 𝑎 + (𝑏 − 𝑎) × 𝑈𝑠𝑒(0,1) 

𝑥𝑠𝑛

= 𝑟𝑜𝑢𝑛𝑑(𝑥1𝑠𝑛)𝑤ℎ𝑖𝑐ℎ 𝑟𝑜𝑢𝑛𝑑𝑠𝑥1𝑠𝑛𝑡𝑜 𝑜𝑛𝑒 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 

Where𝑈(0,1): represents a randomly generated number 

from the Uniform distribution on the interval (0,1). 

3. In order to generate 𝑥𝑠𝑛 such that it has a mean of 0.73 and a 

variance𝜎𝑣
2 = 𝑣,  a and b had to be solved from following 

equations: 

Mean of a uniform random variable  →
𝑎+𝑏

2
= 0.73 

Variance of a uniform random variable  →
(𝑏−𝑎)2

12
= 𝜎𝑣

2 

Resulting in  𝑎 = −1, 𝑏 = 2.46 where 𝜎𝑣
2 = 1 

                           𝑎 = −1.72, 𝑏 = 3.18 where 𝜎𝑣
2 = 2                 
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4. Considering the special case for settings 6 and 7, the 

variance values are: 𝜎𝑣
2 = 2 and 4 respectively. 

5. Within the same step where 𝑥𝑖’s were generated, the 

probability of an event occurring as a result of the 𝑥𝑖’s was 

calculated according to the logistic model: 

𝑃(𝑌 = 1|𝑋 = 𝑥𝑖) =
𝑒𝛽0+𝛽1𝑥𝑖

1+𝑒𝛽0+𝛽1𝑥𝑖
= 𝜋(𝑥𝑖), 

Where: 𝛽0 = 0, 𝛽1 = 1 and 𝛽0 = −0.85, −2.5, 𝛽1 = 1for the 

special chi-squared case. The terms𝛽0and𝛽1 partially control 

the proportion of events𝜋(𝑥𝑖). In the simulation process, the 

outcome variable y is generated by comparing an 

independently generated 𝑈(0,1) random variable u, to the 

true logistic probability value, using the rule 𝑦 = 1 if 𝑢 ≤

𝜋(𝑥𝑖) and 𝑦 = 0 otherwise (Bernard et al. (2018)). 

6. The process outlined above was performed 1000 times 

resulting in a data set with 1000 observations denoted by: 

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯ (𝑥1000, 𝑦1000)}. 

7. The next step  was to partition the 1000 observation into 

four individual data sets of sizes 50,100,200 and 500 in the 

following manner: 

Table IV. Size and elements of the generated bivariate 

observations 

Size of data 

set 

Elements of generated data set 

50 {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯ , (𝑥50, 𝑦50)} 

100 {(𝑥51, 𝑦51), (𝑥52, 𝑦52), ⋯ , (𝑥150, 𝑦150)} 

200 {(𝑥251, 𝑦251), (𝑥252, 𝑦252), ⋯ , (𝑥450, 𝑦450)} 

500 {(𝑥451, 𝑦451), (𝑥452, 𝑦452), ⋯ , (𝑥950, 𝑦950)} 

 

8. The process described above was replicated 1000 times for 

each data set in each scenario, producing 4000 data sets 

generated for each setting. Therefore, there were a total of 5 

settings ×4000 data sets = 20000 data sets generated, this is 

in addition to  2 settings × 4000 data sets = 8000 for the data 

sets having chi-squared predictor variables. Therefore in 

total, there were 28000 data sets created, and analyzed using 

logistic regression. 

In all simulation, initially, a sample of size 𝑛 =

50, 100, 200 and 500 is generated as values of the covariate 

followed by the generation of the outcome variable to follow 

a logistic model with 𝑋2 as covariate when the covariate 

distribution is from Standard Normal, and with 𝑋−2 when 

the covariate distribution is from Normal or Uniform, and 

with 𝑋−1when the covariate is from Chi-squared 

distribution, but the model is fitted continually with linear 𝑋 

as covariate (Hjort, 1988), taking into consideration that the 

fitted model is incorrectly specified. 

Univariate logistic regression using the GLM (generalized 

linear model) function in RStudio was applied to the 

generated data to determine the parameter estimates. The 

GLM function uses the maximum likelihood algorithm 

(RStudio Software, 2009) to compute the parameter 

estimates of 𝛽0and 𝛽1. After the incorrect logistic regression 

model has been fitted for each setting, the outcome 𝑦 and 

model fitted probabilities are passed to the hoslem.test 

function, choosing 𝑔 = 10 groups.  

Results 

After following the implementation of the above described 

steps, the results are stated as: 

First let’s calculate the test statistic without repeated sample 

to check how it will perform. Table V below shows the 

Hosmer-Lemeshow goodness of fit test statistic for each 

incorrect fitted model. The results from Table V show that, 

in all settings the value of the test statistic is increased with 

sample size, and the test never gives significant evidence of 

poor fit when the sample size is 50. But in most settings, 

with a sample size of 100 or more, the test gives us evidence 

of poor fit. Then the result becomes misleading when the 

setting is Standard Normal and the sample size is 100 for 

the test gives evidence of good fit for this data set. But if we 

use group numbers as:𝑔 < 10 or 10 < 𝑔 < 15 we will 

findthe evidence of poor fit for the test. 

Table V. Value of the 𝑪̂ statistic, Degree of freedom and 

P-value for the Incorrect Model for each setting.  

Covariate 

Distribution 

Sample 

Size 
𝐶̂ df p-value 

 

 

N ( 0 , 1 ) 

50 12.849 

13.212 

22.630 

80.986 

8 

8 

8 

8 

0.1172 

0.1048 

0.0039 

0.0000 

100 

200 

500 

 

 

N ( 0.73 , 1 ) 

50 7.4711 

21.058 

30.507 

72.557 

8 

8 

8 

8 

0.4868 

0.0070 

0.0002 

0.0000 

100 

200 

500 

 

 

N ( 0.73 , 2 ) 

50 10.694 

18.424 

36.431 

91.010 

8 

8 

8 

8 

0.2196 

0.0183 

0.0001 

0.0000 

100 

200 

500 

 

 

U ( -1 , 2.46 ) 

50 12.519 

20.557 

21.250 

24.764 

8 

8 

8 

8 

0.1295 

0.0084 

0.0065 

0.0017 

100 

200 

500 
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U ( -1.72 , 3.18 

) 

50 13.028 

21.169 

59.142 

59.226 

8 

8 

8 

8 

0.1109 

0.0067 

0.0000 

0.0000 

100 

200 

500 

 

 

𝑋(1)
2  

50 10.844 

16.171 

17.652 

49.257 

8 

8 

8 

8 

0.2107 

0.0400 

0.0240 

0.0000 

100 

200 

500 

 

 

𝑋(2)
2  

50 8.1861 

33.220 

43.686 

71.938 

8 

8 

8 

8 

0.4155 

0.0006 

0.0000 

0.0000 

100 

200 

500 

 

Taking into consideration different numbers of groups, the 

main objective here becomes to see how the test’s p-value 

changes in case of the incorrect model. These numbers of 

groups can be:𝑔 = 5, 𝑔 = 6, up to 𝑔 = 15. Table VI shows 

the p-value for Hosmer-Lemeshow statistic computed from 

the different number of groups. 

From the bellow table we note that, when the sample size is 

50 and the variance equal to 1 and the distributions are: the 

Standard Normal distribution, Normal distribution and 

Uniform distribution, the final result of the test is not affect 

by the change of the number of groups, meaning that, the p-

value in all groups do not give evidence of poor fit, but 

when the variance change to 2 the final result of the test is 

affected by the change of some groups most of which are 

less than 10 groups, and this is true when the distribution is 

Normal distribution, but when the distribution is Uniform 

distribution that result is affected only by the change of 

some groups which are less than 10 groups. 

In the case of Chi-squared distribution and when the sample 

size is 50 and the variance equal to 2, the p-value when the 

number of groups is 5 or 9 was 0.05 and this is equal to the 

value of 𝛼. In this case, we reject the null hypothesis, and 

this is a sign of poor fit. This indicates that, the final result 

of the test is affected by the change of some groups which 

are less than 10 groups. Meanwhile, if the variance changes 

to 4, the change in the number of groups did not affect the 

final result of the test. Whereas, the p-value in all groups did 

not give evidence of poor fit. 

When the sample size is 100, and the variance is equal to 1 

then, the final result of the test is affected by the change of 

some groups most of which are more than 10 groups, 

whereas the p-value in those groups gives evidence of good 

fit. This is true in case of Normal distribution or Uniform 

distribution. But when the variance changes to 2 and when 

the distribution is Normal, it is not affected by the variance 

change. On the contrary, when the distribution is Uniform, 

then the variance change helps to detect the lack of fit in 

those groups. In the case of Standard Normal distribution 

the final result of the test is affected by the change in the 

number of groups which are less than 10, and most number 

of groups which are more than 10 groups whereas, its 

change also helped to detect the lack of fit. 

In the case of chi-squared distribution, and when the sample 

size is 100 and the variance  value equals to 2, the final 

result of the test is clearly affected by changing whole 

number of groups which are less than and more than 10 

groups whereas, the p-value in those groups give evidence 

of good fit, and when the variance change to 4 then its 

change helps to detect the lack of fit in all groups which are 

less than 10 groups and some of the groups which are more 

than 10 groups. 

When the sample size is 200 or 500 and the variance equal 

to 1, and also, when the variance changes to 2 then we find 

evidence of poor fit in the all groups and this means that the 

final result of the test is not affect by changing the number 

of groups and the variance. 

In the case of Chi-squared distribution, we find evidence of 

poor fit in all groups except when 𝑔 = 15, which means that 

changing the number of groups does not have a significant 

effect on the final result of the test, and this is true when the 

sample size is 200 and the variance equals to 2, and when 

the variance changes to 4 then we find evidence of poor fit 

in the all groups which means that changing the variance 

reflects lack of fit in that group. And when the sample size is 

500 and the variance equals to 2 or changed to 4 then, 

changing the number of groups is not affecting the final 

result of the test, and the p-value shows evidence of poor fit 

in all groups. 

To finish, let’s check how the test performs in repeated 

sample, since we want to see whether the covariate’s 

distribution and the sample size will affect the power of the 

test. Table VII below presents the power; the percent of 

rejection of the hypothesis of test fit at the 𝛼 = 0.05 level 
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Table VI. P-value of the Hosmer-Lemeshow 𝑪̂ statistic for incorrect model computed from different number of groups 

Covariate 

Distribution 

Sample 

Size 
𝑔 = 5 𝑔 = 6 𝑔 = 7 𝑔 = 8 𝑔 = 9 𝑔 = 10 𝑔 = 11 𝑔 = 12 𝑔 = 13 𝑔 = 14 𝑔 = 15 

 

 

N (0 , 1) 

50 0.8487 

0.0292 

0.0014 

0.0000 

0.5531 

0.0045 

0.0011 

0.0000 

0.6245 

0.0120 

0.0003 

0.0000 

0.7211 

0.0185 

0.0002 

0.0000 

0.5730 

0.0071 

0.0005 

0.0000 

0.1172 

0.1048 

0.0039 

0.0000 

0.2831 

0.0269 

0.0034 

0.0000 

0.3943 

0.0372 

0.0011 

0.0000 

0.4892 

0.0436 

0.0060 

0.0000 

0.3941 

0.0299 

0.0031 

0.0000 

0.3991 

0.1084 

0.0164 

0.0000 

100 

200 

500 

 

 

N (0.73 , 1) 

50 0.3293 

0.0596 

0.0047 

0.0000 

0.4292 

0.1113 

0.0040 

0.0000 

0.5309 

0.0210 

0.0009 

0.0000 

0.4124 

0.0187 

0.0007 

0.0000 

0.4715 

0.0233 

0.0002 

0.0000 

0.4868 

0.0070 

0.0002 

0.0000 

0.4071 

0.2425 

0.0018 

0.0000 

0.5318 

0.2064 

0.0023 

0.0000 

0.1919 

0.1251 

0.0009 

0.0000 

0.5791 

0.0836 

0.0001 

0.0000 

0.6654 

0.0350 

0.0001 

0.0000 

100 

200 

500 

 

 

N (0.73 , 2) 

50 0.0577 

0.0098 

0.0006 

0.0000 

0.0342 

0.1449 

0.0006 

0.0000 

0.0389 

0.0433 

0.0001 

0.0000 

0.0156 

0.0527 

0.0000 

0.0000 

0.0217 

0.0566 

0.0000 

0.0000 

0.2196 

0.0183 

0.0001 

0.0000 

0.1615 

0.2494 

0.0000 

0.0000 

0.1496 

0.2011 

0.0002 

0.0000 

0.0416 

0.1104 

0.0005 

0.0000 

0.1575 

0.0584 

0.0002 

0.0000 

0.2094 

0.0386 

0.0002 

0.0000 

100 

200 

500 

 

 

U (-1 , 2.46) 

50 0.2073 

0.0214 

0.0070 

0.0042 

0.1374 

0.1158 

0.0395 

0.0001 

0.1152 

0.0144 

0.0075 

0.0009 

0.2042 

0.0124 

0.0206 

0.0006 

0.2254 

0.0146 

0.0042 

0.0077 

0.1295 

0.0084 

0.0065 

0.0017 

0.2945 

0.1557 

0.0009 

0.0010 

0.1252 

0.0498 

0.0145 

0.0008 

0.1752 

0.0919 

0.0016 

0.0002 

0.1935 

0.1355 

0.0025 

0.0001 

0.3454 

0.1892 

0.0026 

0.0009 

100 

200 

500 

 

 

U (-1.72,3.18) 

50 0.0115 

0.0589 

0.0000 

0.0000 

0.1436 

0.0069 

0.0001 

0.0000 

0.0220 

0.0148 

0.0003 

0.0000 

0.0619 

0.0136 

0.0000 

0.0000 

0.0886 

0.0210 

0.0000 

0.0000 

0.1109 

0.0067 

0.0000 

0.0000 

0.2420 

0.0109 

0.0000 

0.0000 

0.3819 

0.0028 

0.0006 

0.0000 

0.2244 

0.0100 

0.0005 

0.0000 

0.2354 

0.0033 

0.0000 

0.0000 

0.0933 

0.0483 

0.0000 

0.0000 

100 

200 

500 

 

 

𝑋(1)
2  

50 0.0464 

0.0585 

0.0024 

0.0000 

0.0989 

0.1671 

0.0016 

0.0000 

0.0608 

0.0664 

0.0096 

0.0000 

0.1318 

0.1135 

0.0398 

0.0000 

0.0540 

0.3217 

0.0431 

0.0000 

0.2107 

0.0400 

0.0240 

0.0000 

0.2894 

0.1859 

0.0088 

0.0000 

0.0678 

0.1829 

0.0195 

0.0000 

0.1475 

0.0578 

0.0349 

0.0000 

0.0576 

0.1698 

0.0506 

0.0000 

0.2559 

0.2759 

0.0850 

0.0000 

100 

200 

500 

 

 

𝑋(2)
2  

50 0.7057 

0.0029 

0.0000 

0.0000 

0.7232 

0.0128 

0.0000 

0.0000 

0.3220 

0.0026 

0.0000 

0.0000 

0.1511 

0.0026 

0.0000 

0.0000 

0.1877 

0.0020 

0.0001 

0.0000 

0.4155 

0.0006 

0.0000 

0.0000 

0.2898 

0.0003 

0.0000 

0.0000 

0.4891 

0.0001 

0.0000 

0.0000 

0.2750 

0.0867 

0.0000 

0.0000 

0.2217 

0.0327 

0.0000 

0.0000 

0.3345 

0.0634 

0.0000 

0.0000 

100 

200 

500 
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. 

Table VII. Simulated percent of rejection at 𝜶 = 𝟎. 𝟎𝟓 for 

incorrect model for each of the settings 

Distributio

n\ 

Sample 

Size 

 

N ( 0 , 1) 

 

 

N 

(0.73,1) 

 

N 

(0.73,2) 

 

U(-

1,2.46) 

 

U(-

1.72,3.1

8) 

 

𝑋(1)
2  

 

𝑋(2)
2  

50 28.7 19.8 30.8 13.8 25.8 19.6 46.6 

100 68.4 47.3 74.5 37.8 65.7 60.4 85.5 

200 97.3 89.2 99.6 81.4 98.5 97.9 99.7 

500 100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

 

Table VII reflects the results of the different combinations of 

sample sizes and type of population used in the analysis. It 

indicates that, from 1000 simulations, the Hosmer-Lemeshow 

test gives significant evidence of poor fit in all settings. First, 

let’s look at the test performance from the sample sizes, in all 

settings, with a sample size of 50 and 100, the test has low 

power to detect poor or lack of fit, except when the covariate 

distribution is from Chi-squared with variance equal to 4, the 

power is then 85.5 percent for sample of size 100. High power is 

attained for sample of size 200 or up, and for all settings the 

power increases rapidly with sample size. For every setting, the 

power is 100 percent for sample of size 500, so the test does not 

detect the poor fit more. Table VII also reveals that the variance 

affects the test performance, since the power in all settings 

increases when the variance changed between 1 and 2 or 2 and 

4. 

Discussion 

Taking into consideration that the main objective of this paper 

was to examine the performance of Hosmer-Lemeshow test 

when the fitted logistic model is the incorrect model along with 

various circumstances; accordingly the results came out pointing 

to several things. In case of using 10 groups and in all the 

various settings, the test statistic increased with the sample size, 

and it did not give any evidence of poor fit, and more precisely 

when the sample size is 50. In most settings, the test gives 

evidence of poor fit in case of sample size of 100 or more. On 

the contrary, if the selected distribution is the Standard Normal 

accompanied with sample size of 100, the result is misleading, 

since the test clearly gives evidence of good fit for this data set. 

This may be due to chance and further investigation is needed.  

 

Moreover, if the number of groups is changed, Hosmer-

Lemeshow test is affected by the sample size whereas, the 

power of the test increased with the increase in the sample size. 

Also, the test is affected by the change in: number of groups (10 

& more), population distribution, especially to the Uniform 

distribution, small sample size, and variance which helped very 

much to detect lack of fit. In the case of chi-squared distribution 

the final result of the test is affected by changing all the number 

of groups which are less than and more than 10 groups, but 

when the variance changed then its change helped to detect the 

lack of fit. And when the sample size was large, the result of the 

test remained unaffected by any change in number of groups or 

variance. 

Accordingly simulation process was then applied to check for 

how well the test will perform in repeated sample and to see 

whether the covariate’s distribution and the sample size will 

affect the power of the test. Considering thousand numbers of 

iterations and generally, the results indicated that, in all settings, 

Hosmer-Lemeshow test gives significant evidence of poor fit. 

Except for the case of using Chi-Squared distribution along with 

a variance value equal to 4 and a sample size of 100 or more, the 

detected power was a high one(85.5 per cent).Thus, one can say 

that the performance of Hosmer – Lemeshow test in case of 

incorrect model and through its interaction with the control 

factors, is relatively better compared to its performance in the 

case of the correct model (presented by previous preceding 

work), whereas, it’s use as a criterion to detect lack of fit is 

better than using it as a criterion to detect goodness of fit. 

Conclusion 

Finally, we can say that in the case of the incorrect logistic 

regression model and when Hosmer-Lemeshow test is used the 

results concluded that the test is affected by changing the 

number of groups especially when the sample size was small. 

Moreover, when the simulation technique is used to check for 

the effect of repeated sample and to see whether the covariate’s 

distribution and the sample size will affect the power of the test 

or not and to what extent, it has been revealed that the power of 

the test increases with the increase in both the sample size and 

the variance value. The final result of the test does not affect by 

the changing number of groups or variance value when the 

sample size is large, and accordingly its performance in case of 

the incorrect model and through its interaction with the control 

factors, is relatively better compared to its performance in the 

case of the correct model. Whereas, it’s use as a criterion to 

detect lack of fit is better than using it as a criterion to detect 

goodness of fit. 

Recommendation 

Based on the results of this paper, the following 

recommendations are available to serve as guidelines for the use 

of Hosmer-Lemeshow test: 
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1. The Hosmer-Lemeshow statistic 𝐶̂ should be used to confirm 

the lack of fit of the model after using other goodness of fit tests. 

2. The results of this paper are not certified and not applicable 

because they depend entirely on simulations which are methods 

that, in general, not exact. Simulations yield an empirical result, 

i.e. numbers, which are valid for the particular simulated 

experiment only. The second reason is that choosing of the 

cutoff points in groups may be inappropriate in all settings.  

Nevertheless, the results may be appropriate in situations that 

resemble those of the conducted simulation process. 
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