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Abstract

In this paper, we studied Kober integral operator of the second kind of order «, and we found Mellin transform of this operator, we
discussed the relation between Mellin transform of Kober operator and the expected value of product of two random variables one
of them has a type-1 beta density, and we also discussed a pathway Kober operator of the second kind as a generalization of some
densities
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Introduction Then the Mellin transform of the Kober operator of the second
In 1940 Kober introduced some generalization of the basic kind is given by
Riemann-Liouville fractional integral and differential operators
see [1]. The Kober fractional integral operator related to some {K 2 | }
statistical distributions. This relation will also allow us to come _ fw 1 [i f(t
up with a general definition for fractional integral Kober ) r'(a)
operator of the second kind see [6]. One of the generalization
considered is the pathway idea where one can move from one -0 e f () dt] dx (23)
family of operators to another family and yet another family and
eventually end up with an exponential form see [5]. Interchanging the integrals, we get

1. Mellin Transform of The Kober Operator of The by H xBHs=1(¢ — x)a-1

Second Kind M{Kz 5 1} = ft ’ af(t)[ f I'(a) dx] dt
The Kober fractional integral of the second of order a is defined
and denoted as . , a—l
xB+s= 1 -1
K%, f f tB-a (1) [ r( ) dx] dt  (2.4)
o t=0 =0

xB

BNO)) f(t — )P f(e) de (2.1) by using the following substitution
X
Mellin transform of the function f (x) is defined and denoted y= )_t( or x=ty and dx=tdy
asl
and y = 0whenx=0 |, y=1whenx =t
f(s) = M{f(x)}
® we get

= f x5t f(x) dx (2.2)

0
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M{K;%p f}

< ! t B+s—1 1-— a-1 te
_ ft—ﬁ—af(t)[f(y) ﬁ(a)Y) dy‘dt

t=0 y=0
1 (=] 1
I — s-1 B+s—-1
F(“)J;t f(t)dty!oy (1
-yt dy (2.5)

in equation(2.5), first integration is equal to f*(s) and second

r(@)r(p+s)

where
r'(a+p+s)

integration is equal to beta(B + s,a) =

beta(n,m) = [* y"1(1—y)™ ! dy, then (2.5) becomes
y=0

M{K;3 f}

= LB+ g

T TI'(a+pB+s) (2.6)

2. The Relation between Kober Operator of the
Second Kind and Type-1 Beta density:

As we know that type-1 beta density with the parameters n,m
is defined as

I'(n+m)

I—v(n) I—v(m)y=0yn_ (1—}’) a dy

(3.1

If we have two independently distributed random variables
X1, %, ,and x; has a type-1 beta density with the parameters
B+ 1,a denoted by f;(x;) , and x, has an arbitrary density

f2(x2) , then the density of product u = x;x, can be written as

gw)

= [54C) o) av (32)

1. .
where v = x, , thenx, = xl = % and - is the Jacobian
2

Taking f; as type-1 beta with the parameters g+ 1,a, v —

cowhenx; =0,v=uwhenx; =1, we get

F@+B+1) (1 u\b a-1
90) = Dy i@ oy &) (173) £0)
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_T@+p+1) uf r®

FED r@),t TR v

_r@+p+1)
= TTG+D Koxp f2 (3.3)

that means

Koxp f2

r 1
L

T I(a+B+1) G4

We can find Mellin transform of both sides of(3.4), we get

rg+1)
r'a+p+1)
rg+1)

“Ta+p+n9®

iz 11 LD )

(3.5)

The expected value of us~1 is equal to

E(x;%,)° ' = E(x,° ' x,°7 1)

(3.6)

since x, and x, are independently distributed random
variables®, then

E(x1x,)° 7"

=E(* ) E(x™) (3.7)

in equation(3.7), first expected value

E(x1s_1)
_T@+p+1)
T r(B+1)

r'(B+s)
I'a+pB+s)

(3.8)

and second expected value is the Mellin transform of the density

function f, , then

E@s™)
_T@+B+1) IB+s) .
T r(B+1) r(a+pB+s) f2(s) (3.9)

We can find Mellin transform of both sides of (3.4), we get
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~ rg+1)
ikt £) = M s 0]
_ r+n
“ra+prnd® G0

since E (us~1) is the Mellin transform of g(u) , then

rg+1
Fa+p+n
rgg+1

~FarprD @ G

M{K; % fo} =

From equation(3.8)

M{K; g fo}
reg+1) rT(a+p+1) T B+s)

T T@+f+1) TE+1D T@+f+s) f(s)
. I'(B+ys) .
I ED) f(s) (3.12)

equation (3.12) show the relation between Kober operator of
the second kind and type-1 beta density by using Mellin

transform.
3. A Pathway Kober Operator of The Second Kind:

We have two types of pathway Kober operator of the second

kind densities :

(i Left pathway density :

fitx) = ¢, Y[l —a(l— p)xi‘s]% for p

<1 (4.1
where
5[a(1—p)]sr(y+1+l“p+1) i1
€ = Y+ 1 for 5
L rGE=+1
rdorGES+n
u
>0, —>0 (4.2
s (4.2)

From equation(3.2), if x, has an arbitrary density f,(x,) and x;

has a pathway density, then the density of u = x; x, is given

by

_u
s =G [1—a(1—p) (%)5] " L) dv

bV
car [Tl
v=[a(1-p)]8
—a(1
wSTiep
-»(5) ] f(v) dv (43)

Where p describes a path of movement Kober operator of the
second kind. In the limit when —» (1, from definition of

exponential function

eac

= lirr&(l + ax)g (4.4)
The equation(4.3) will go to
llgn)lg(u)
= Cou f s e v ® £ ) dv (4.5)
4
where
G
y+1
_6(ap) 5

= — (4.6)
F(y + 1)

(i) Right pathway density:

If p > 1then (1 — p) changesto - (p — 1) and (4.1) becomes

filx) = ¢, xly[l +alp— 1)x18]p___u1 for p
>1 4.7)

where
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5 [ap - DT 1L

D f )/+1>1
c, = or ,
2 r(“l)r( 1 _u+1) 5
) p—1 6
U u+1
— >~ (48
=1 5 (4.8)

the density of u = x; x, is given by

sw=cf () [1 ra(p-1) (%)B]F f) dv

~1) (g)g}ﬁ fo(v) dv (4.9)

Similarly, we can use the definition of exponential function, we

get
pg(rphg(u)
[e9) S
= Czuyf pr1e7k(5) f,(v) dv (4.10)
v=0
where
G
5 ()5
ap) ¢
rd<=

then ¢, = C, =C,and lim g(u)= lim g(u) =
p—)(_)l p—>(+)1

lim g(u)

p—1

We can rewriting £, (v) as a function of v=9 , let us consider

£:(v) = f3(v=%) by substitutingt = v=% orv = t5 and dv =

- C5)
S e dt , (4.5) and (4.10) become

u¥ [(© y+1 s _(ﬂ)
limg(u) = C—f t8 e @HWt £ N8 fi(t) dv
p=1 6 Jizo
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u¥ [* y=8 5
=(C— t 8 e UL £(t) dv

(4.12)
8 Ji=o

Let us consider s = apu® >0andm = VT_‘S , (4.12) becomes

lim g(u)
p-1
u’
=C— | tMe™st f5(t) dv (4.13)
8 Ji=o
From properties of Laplace transform , we get
lim g(u)
po1
d™F;(s)
=-1)"——F—- 4.14
-y —= (4.14)

where F;(s) is a Laplace transform of f;(¢).

If m is an integer number, then we can find lirr} g, ifmisa
y2kad

fractional number we can solve (4.14) by using the fractional
integral operators.

Conclusion:

In this paper, we present the Kober operator of the second kind
as a density of product of two statistically independently
distributed real positive random variables, this operator and its
pathway density related to Mellin and Laplace transforms, this
relation allow us to work with more fractional integral operators

by using some properties of these transforms.
References:

[1] H. J. Haubold, A. M. Mathai, An Introduction to Fractional
Calculus, Mathematics Research Development, New York,
2017.

[2] A. M. Mathai, Explicit evaluations of gamma and beta
integrals in the matrix variate case, Journal of The Indian
Mathematical Society, 81(3-1) (2014), 259-271.

[3] S. S. Nair, Statistical Distributions Connected with Pathway
Model and Generalized Fractional Integral Operator, Ph.D
Thesis, Banaras Hindu University, 2012.




Gubara, Graduate College Journal - NU Vol.15 -2020, No. (6), 69 - 73

[4] A. M. Mathai and H. J. Haubold, A pathway from Bayesian
statistical analysis to super statistics, Applied Mathematics and
Computations, 218(2011), 799-804.

[5] Seema S. Nair, Pathway fractional integral operator and
matrix-variate functions, Integral Transforms and Special
Functions, 22(3) (2011), 233-244.

[6] A. M. Mathai, Fractional integral in the matrix-variate case
and connection to statistical distribution, Integral Transforms
and Special Functions, 20(12)(2009), 871-882.

[71 A. M. Mathai and H. J. Haubold, Special Functions for
Applied Scientists, Springer, New York, (2008).

[8] A. M. Mathai, Apathway to matrix-variate gamma and
normal densities, Linear Algebra and its Application,
396(2005), 317-328.

[9] Hossein Pishro, Introduction to Probability, Statistics and
Random Processes, Springer, (2001).

73




