Graduate College Journal — NU Onhad! daals - Ldall alewlyud! alxs

Vol.19 -2024, No. (11) ﬁ (11) saadl .2024— (19) b=l

ISSN: 1858-6228, http://www.neelain .edu.sd \\‘;:/ 1858-6228 b youll ugdl Joull 08,0

Analyzing the Efficiency and Complexity of Cryptography Algorithm
A Focus on Elliptic Curve Diffie-Hellman (ECDH) Hybrid with Artificial Neural Networks (ANN)

Warfa Aref Ahmed Ibrahim®*, Fakhreddin Abbas?, and Fakhereldeen E.E Musa!

!Department of Computer Science, Faculty of Computer Science and Information Technology, Al-Neelain
University, Khartoum, Sudan

2Department of Statistics, Faculty of Mathematical Sciences and Statistics, Al-Neelain University, Khartoum,
Sudan.

*Corresponding author email° wafa.2011@live.com

Abstract

Ensuring data security is crucial in today's digital environment, where information exchange happens rapidly and
continuously. Encryption plays a vital role in safeguarding sensitive data from unauthorized access and breaches.
This study focuses on analyzing the encryption algorithm using hybrid elliptic curve Diffie-Hellman (ECDH) with
Artificial Neural Networks (ANN), known as ECDH_ANN. Multiple input scenarios were evaluated, measuring
memory complexities, operational requirements, and efficiency metrics to determine algorithm effectiveness. The
primary challenge lies in improving encryption algorithms, particularly elliptic curves, and studying their
complexities and performance. The ultimate goal is to measure efficiency and calculate complexities through
evaluating various input scenarios, estimating execution time, memory usage, and optimizing encryption and
decryption processes. This study was conducted across 50 different-sized files. The results show that as the file
size grows, the encryption and decryption times also rise, while memory usage stays relatively constant, indicating
efficient resource management. The algorithm maintains consistent file sizes during encryption and decryption
processes, distinguishing it from algorithms that may inflate file sizes. The study also demonstrates that encryption
and decryption operations exhibit linear growth rates. Overall, the ECDH_ANN algorithm stands out for its ability
to maintain data integrity and use computational resources efficiently, making it perfectly suited for environments
prioritizing data security and computational efficiency. The study recommends using this algorithm due to its
quality and suggests comparing it with other algorithms for further analysis.

Key words: Encryption, Data Security, Cryptographic Algorithms, ECDH Hybrid, Artificial Neural Networks,
Computational Efficiency, Data Integrity.

Introduction

In the contemporary digital landscape, the escalating transformative tool in augmenting the capabilities of
volume of sensitive data exchanged across networks cryptographic algorithms, amplifying their efficacy
underscores the paramount importance of encryption and resilience against adversarial attacks. ANNS,
mechanisms in ensuring information security. inspired by the complex interconnected structure of the
Encryption stands as a fundamental pillar in human brain, offer unparalleled computational power
safeguarding data integrity and confidentiality, and adaptability, enabling innovative approaches to
mitigating the risks posed by unauthorized access and encryption and decryption processes. Through iterative
malicious intrusions. As cyber, threats continue to learning and pattern recognition, ANNs empower
evolve in sophistication and frequency, the adoption of cryptographic systems to enhance their ability to detect
robust encryption methodologies becomes imperative anomalies, resist cryptanalysis, and optimize resource
to fortify the resilience of digital infrastructures. utilization.

Artificial neural networks (ANNSs) have emerged as a

15

mailto:wafa.2011@live.com

Ibrahim et al., Graduate College Journal - NU Vol.19 -2024, No. (11), 15 - 25

The primary objective of this research is to analyze the
complexities and efficiency metrics inherent in
cryptographic algorithms, with a particular focus on the
integration of artificial neural networks within the
Elliptic Curve Diffie-Hellman (ECDH) hybrid
algorithm. The study seeks to ascertain the efficacy of
the ECDH_ANN algorithm in preserving data integrity
and computational efficiency across diverse
operational scenarios. Additionally, the research
endeavors to validate hypotheses regarding the
scalability, accuracy, and resilience of the
ECDH_ANN algorithm compared to conventional
encryption methodologies.

Structured into distinct sections, this paper unfolds as
follows: First, an overview of the increasing
significance of encryption in the digital age presented,
contextualizing the necessity for advanced
cryptographic techniques. Subsequently, the role of
artificial neural networks in enhancing cryptographic
algorithms elucidated, highlighting their
transformative impact on encryption methodologies.
Following this, the research objectives and hypotheses
delineated, providing a clear roadmap for the ensuing
analysis and evaluation. Finally, the structure of the
paper outlined, delineating the thematic organization of
subsequent sections and the flow of information
therein. Through this structured approach, this paper
endeavors to contribute nuanced insights into the realm
of cryptographic algorithms, underscoring the pivotal
role of artificial neural networks in fortifying data
security in the digital age.

Literature Review:

This literature review examines the integration of
Elliptic Curve Diffie-Hellman (ECDH) with artificial
neural networks (ANNS) in cryptographic systems. The
Diffie-Hellman key exchange (DHKE) introduced
asymmetric encryption but lacks authentication
mechanisms, leaving it vulnerable to man-in-the-
middle attacks. The ECDH protocol addresses these
issues by employing elliptic curve cryptography,

enhancing both security and efficiency.

Artificial neural networks (ANNS) inspired by the
human brain's structure and functioning, bring unique
capabilities in pattern recognition, optimization, and
learning. They have been explored in encryption and
decryption processes to improve security and
computational efficiency. Various methodologies
have been employed in relevant studies to evaluate
cryptographic algorithms. For instance, Othman
Alesawy and Ravie Chandren Muniyandi (2016)
conducted a study on secure data transmission over
private clouds using ECDH combined with ANN and
genetic algorithms, showing enhancements in time
efficiency, performance, and accuracy (Alesawy &
Muniyandi, 2016, p. 80). Additionally, Aws Naser et
al. (2016) proposed a conceptual model integrating
ECDH with ANNSs for cloud computing, emphasizing
practical applications of neural networks in
cryptographic systems (Naser & Zolkipli, 2016).
DUAN et al. (2020) introduced a novel image
steganography method that integrates Image Elliptic
Curve Cryptography (ECC) with Deep Neural
Networks (DNN). This method prioritizes secure
embedding, payload capacity, and human-perceivable
image quality. It involves Discrete Cosine Transform
(DCT) for the secret image, ECC encryption, and
SegNet DNN to increase steganography capacity.
Experimental results demonstrated efficient pixel
allocation, high steganography capacity, and
improved image quality metrics (PSNR and SSIM),
effectively concealing data and enhancing image
quality (Duan et al., 2020). However, existing studies
often face challenges related to scalability,
computational complexity, and real-world
applicability. This review aims to address these gaps
by evaluating the complexities and efficiency of the
ECDH hybrid algorithm using artificial neural
networks. It seeks to identify optimal encryption
solutions that balance security and computational
efficiency through comprehensive analyses of various
input scenarios and memory complexities.

Moreover, the study aims to provide insights into the

scalability, accuracy, and efficiency of the ECDH

Ibrahim et al., Graduate College Journal - NU Vol.19 -2024, No. (11), 15 - 25

hybrid algorithm under diverse conditions, aiming to
contribute to a deeper understanding of its performance
in cryptographic applications.

Methodology

The research design and methodology employed in this
study aim to comprehensive analyze the complexities
and efficiency of cryptographic algorithms,
specifically focusing on the Elliptic Curve Diffie-
Hellman (ECDH) hybrid algorithm using artificial
(ANNs). The

data collection methods,

neural networks methodology

encompasses analysis
techniques, and criteria for measuring algorithm

quality and performance see Fig(1).

Collect Scientific Papers and Identify the Proplem

| Identity algorthim ECDH |

Integrate with ANN

v

Determine most Important Criteria

¥

Design Algorthim to Measuer Complexisties

¥

Implementation

v

Disscustion

¥

Conelusion and Recommendation

Figure (1): Methodology
Data Collection:
Data collection for this study involves gathering
information on various input scenarios, memory
complexities, operational requirements, and efficiency
metrics related to the ECDH hybrid algorithm. Primary
data sources include cryptographic literature, research
papers, and technical documentation detailing
algorithm specifications and performance metrics.
Additionally, data collected

empirical through

simulations, experiments, or real-world
implementations to validate algorithmic performance
under diverse conditions. We put the texts we want to

encrypt in text files of different sizes. Each file will be

duplicated several times, where we will get 10 files of
different sizes. Each file will be repeated five times
with different texts, which means we have 50 files in
total. We will name the files in ascending order
according to their size, where we have very small files,
small files, medium files, large files and very large
files. For example, if we assume that we have a very
small file known as “F1", we will create five other files
of the same size but with different contents, and their
labels become "F11", "F12", "F13", "F14", "F15". We
will repeat this process with the rest of the files to
obtain 50 files, where we have groups of five files of
the same size but different contents. File sizes were
graded and include very small files, small files,
medium files, large files, and very large files, based on
previous studies and their recommendations. In this
way, we will be able to study the changes that may
occur within files of the same size but with different
contents, in order to understand the performance of the
algorithms and evaluate them based on the specified
criteria. The data is laid out and replicated in the
following table:

Table (1): Data Structure:

File Scale Frequency
1 F1 Na}me F11 | F12 | F13 | F14 F15
Size 10 10 10 10 10
5 2 Ngme F21 | F22 | F23 | F24 F25
Size 20 20 20 20 20
3 F3 Ngme F31 | F32 | F33 | F34 F35
Size 30 30 30 30 30
4 4 Ngme FAl | F42 | F43 | F44 Fa5
Size 40 40 40 40 40
5 5 Na}me F51 | F52 | F53 | F54 F55
Size 50 50 50 50 50
6 £6 Ngme F61 | F62 | F63 | F64 F65
Size 60 60 60 60 60
7 7 Ne_1me F71 | F72 | F73 | F74 F75
Size 70 70 70 70 70
8 F8 Ne_1me F81 | F82 | F83 | F84 F85
Size 80 80 80 80 80
9 F9 Ne}me Fo91 | F92 | F93 | F94 F95
Size 90 90 90 90 90
10| Flo Ngme F101 | F102 | F103 | F104 | F105
Size 100 100 100 100 100

17

Analysis Techniques:
The analysis of cryptographic algorithm complexities

and efficiency entails several steps aimed at evaluating

Ibrahim et al., Graduate College Journal - NU Vol.19 -2024, No. (11), 15 - 25

algorithmic performance across different criteria.
These steps include:

1. Identification of Key Parameters: Define the key
parameters relevant to the analysis, such as encryption
and decryption times, memory sizes, file sizes,
computational resources, and optimization results.

2. Evaluation of Algorithm Performance: Assess the
performance of the ECDH hybrid algorithm using
ANNSs across various input scenarios. This involves
conducting simulations or experiments to measure
encryption and decryption times, memory usage, and
computational efficiency under different conditions.

3. Comparative Analysis: Compare the performance of
the ECDH hybrid algorithm 4. Criteria for Measuring
Algorithm Quality: Define criteria for measuring
algorithm quality

and performance, including

efficiency, accuracy, complexity, and scalability,
security, and execution time. These criteria serve as
benchmarks for evaluating the effectiveness of the
ECDH hybrid algorithm in real-world scenarios.
Tools and Software:

Data analysis and visualization are essential
components of this study, requiring specialized tools
and software for processing and interpreting results.
Commonly used tools include MATLAB, Python with
libraries such as NumPy and Pandas, R, and statistical
software packages. These tools facilitate data analysis,
statistical modeling, visualization of results, and
generation of insights from empirical data.
Furthermore, visualization techniques such as charts,
graphs, and plots are employed to present findings
effectively and facilitate understanding. Visualization
tools like Matplotlib, Seaborn, and Tableau utilized to
create visual representations of algorithmic
performance metrics, aiding in the interpretation and
communication of results to stakeholders and
researchers.

Algorithm Description:

The ECDH (Elliptic Curve Diffie-Hellman) hybrid
algorithm represents a sophisticated cryptographic
technique that combines the principles of elliptic curve

cryptography with the computational power of

18

artificial neural networks (ANNs). This section
provides a detailed explanation of the ECDH hybrid
algorithm, highlighting its integration with ANNS,
neural network architecture, parameters, and the
cryptographic principles underlying its operation.

The ECDH hybrid algorithm based on the Diffie-
Hellman key exchange protocol, which enables two
parties to securely establish a shared secret key over an
insecure channel. However, unlike the traditional
Diffie-Hellman protocol, which operates in a finite
field, the ECDH hybrid algorithm leverages elliptic
curve cryptography for enhanced security and
efficiency.

Integration with Artificial Neural Networks:

In the ECDH hybrid algorithm, artificial neural
networks employed to optimize key generation,
encryption, and decryption processes. The neural
network architecture consists of multiple layers,
including an input layer, hidden layers, and an output
layer. The input layer configured to accept input data,
such as plaintext or cipher text, while the output layer
produces the final encrypted or decrypted output see
Fig(2). The hidden layers contain neurons responsible

for processing input data and extracting meaningful

features relevant to the encryption process.

Figure (2):Hybrid Encryption,Decryption and Key
Generation using ECDH and ANN

Source: Prepared by Author wusing Drow.io
Programme, (2024).

The Diffie-Hellman Parameters:

The Diffie-Hellman key exchange (DHKE), proposed

by Whitfield Diffie and Martin Hellman in 1976, is the

Ibrahim et al., Graduate College Journal - NU Vol.19 -2024, No. (11), 15 - 25

first asymmetric cryptographic protocol published
openly. It enables two parties, usually named Alice and
Bob, to establish a shared secret key over an insecure
channel. DHKE operates in a prime field (Zp), utilizing
exponentiation, which is computationally easy to
compute but difficult to reverse. Both parties agree on
domain parameters, including a prime number (p) and
a generator (o), which are publicly known. Each party
selects a private key (a and b) and computes their
respective public keys (A and B) by exponentiating the
generator o to their private keys modulo p. These
public keys are exchanged over the insecure channel.

Using the received public key, each party computes the
shared secret key by raising it to their private key
modulo p (Paar & Pelzl, 1998). This shared key enables
secure communication using symmetric encryption
DHKE's

computational difficulty of the discrete logarithm

algorithms. security relies on the
problem. Attackers, with access only to the public
parameters and keys, would find it challenging to
derive the private keys and the shared secret key.
However, the basic DHKE version is vulnerable to
man-in-the-middle attacks and lacks authentication.
Additional

necessary for ensuring integrity and authenticity in

measures like digital signatures are
practical implementations. The basic idea behind the
DHKE is that exponentiation in Z,, p prime, is a one-
way function and that exponentiation is commutative,
i.e., (Paar & Pelzl, 1998; Singh & Aartinandal, 2020)

Alice
choose a = kpr,A €{2,...,p—2}
compute A = kpub,A = a%mod p

Kpub,A =A
_—

kpub,B =B

kpr,A_ B

Kup = pub B= modp

Neural Network Parameters:

The neural network parameters, including the number
of layers, the number of neurons in each layer, and
activation functions, carefully tuned to optimize
algorithm performance see Fig (3). Common activation
functions used in the ECDH hybrid algorithm include

19

k = (@)Y = (@) modp @)
The value k = (ax)¥ = (ay)* mod p is the joint
secret, which can be used as the session key between
the two parties. Let us now consider how the Diffie—
Hellman key exchanges protocol over Z,, works. In this
protocol, we have two parties, Alice and Bob, who
would like to establish a shared secret key. There is
possibly a trusted third party that properly chooses the
public parameters, which need for the key exchange.
However, it is also possible that Alice or Bob generate
the public parameters. Strictly speaking, the DHKE
consists of two protocols, the set-up protocol and the
main protocol, which performs the actual key
exchange. The set-up protocol consists of the following
steps: Diffie-Hellman Set-up : (Paar & Pelzl, 1998;
Singh & Aartinandal, 2020)

1. Choose a large prime p.

2. Choose an

integer a €

{2,3,...,

p—2}.

3. Publish p

and a.

These two values are sometimes referred to as
domain parameters. If Alice and Bob both know the
public parameters p and a computed in the set-up
phase, they can generate a joint secret key k with the
following key-exchange

protoco(Paar & Pelzl, 1998)I:

Bob
choose b = kpr,B €{2,...,p—2}
compute B = kpub B = al mod p

kpr,B_ Ab

Kup = jpubA= modp

sigmoid, tanh, and ReLU, depending on the specific
requirements of the encryption task. Additionally,
training algorithms such as backpropagation and
gradient descent employed to iteratively adjust the
neural network weights and biases to minimize

prediction errors.

Ibrahim et al., Graduate College Journal - NU Vol.19 -2024, No. (11), 15 - 25

Neural networks have been used in cryptography
operations because of their many advantages. Several
algorithms have been proposed that rely on different
types of neural networks to carry out the process of
encryption and decryption. Among these algorithms,
the backward backpropagation network is cited as an
example. In the process of encryption using neural
network, the steps can be summarized as follows
(Singh and Singh (2012), Singh and Aartinandal
(2020), Chakraborty (2010), and Al-nima, Muhanad,
and Hassan (2009):

1. Enter the text to be encrypted.

2. Convert text to ASCII CODE representation.

3. Create a neural network consisting of an input layer,
an output layer, and a hidden layer. The number of
neurons in the input layer is equal to the size of the text
to be encoded, the number of neurons in the hidden
layer is specified (k), and the number of neurons in the
output layer is equal to the size of the ciphertext.

4. Generate weights between the input layer and the
hidden layer, and between the hidden layer and the
output layer.

5. Generate thresholds for the hidden layer.

6. Train the neural network by calculating the error
rate, updating weights, and the spread of error across
the network.

7. Calculate the output layer using trained weights.

8. Convert ASCIlI CODE values to the appropriate
characters.

9. Encode text using calculated results.

4
Habns Hitsan Outsut

Figure (3): Artificial Neural Networks (ANN) (]
Singh, P., & Singh, H. (2012))

Criteria of Measuring the Complexities for
Cryptographic Algorithms:
The efficiency measurement criteria for different

encryption algorithms include algorithm execution

20

time, file size, space complexities, number of
operations, time complexity, better, medium, and worst
cases, execution cost, effort expended, optimization,
and algorithm efficiency. These metrics help determine
the time required to execute the algorithm, the size of
the file after encryption, the computational complexity
of the algorithm, the best, worst, and average state of
the algorithm's performance, execution cost, the
amount of effort expended, and the efficiency of the
algorithm (Laskari et al., 2007). The execution time is
determined by multiplying the execution time taken by
the number of processors used, while the amount of
effort expended is determined by determining the main
fundamental operation of the problem and calculating
the number of basic operations performed by the
algorithm . The efficiency of an algorithm calculated
by multiplying the number of processors used to
accomplish a particular operation by the time required

to perform that operation. (Cormen et al., 1990)

the
[‘.'- ot she Teat 1o Podm

il L daning
corept
rrym

- -

0 B amld Cy

g the Noveal Neawk |
wids Aduss Hravypes

1) gor el

[n.

K

rx-_.,..,.- e Somrbeds At |

<z >

Figure (4): An Algorithm to Measure Efficiency of
Encryption ECDH using ANN

The Results of Execution:

Implementing and evaluating encryption and
decryption algorithms is vital in information security.
This process assesses the performance of the
ECDH_ANN algorithm by applying it to test files and

measuring execution time, memory consumption, and

Ibrahim et al., Graduate College Journal - NU Vol.19 -2024, No. (11), 15 - 25

complexity. Execution time depends on data volume,
algorithm complexity, and system capacity, measured
in seconds. Algorithm growth rate, represented by
various functions, estimates efficiency and
performance. Complexity analysis categorizes cases
into best, worst, and average, studying memory usage
and its impact on performance. File size affects
memory usage and

performance, aiding in

optimization. Effort measures the work needed to solve
problems with the algorithm, determining efficiency
for files of different sizes. Optimization evaluates best,
worst, and average cases to improve performance. The
number of operations, including basic and iterative
calculations, impacts software efficiency, aiming to

reduce steps for better performance and resource use .

Table (2): Performance Evaluation of ECDH Hybrid Algorithm with ANN in Cryptographic Systems: Encryption and

Decryption for Repeated Files (F1 - F10)

File Operation Time Worst Average Best Memory SFiIZIZ Submitted
excute(s) cases(s) cases(s) cases(s) size (byte) (byte) Effort(s)
F1 Encryption 0.214640 | 0.267039 0.21464 0.200457 | 303883.4 1024 0.11588
Decryption 0.223362 | 0.272167 0.223362 | 0.209113 246678 1024 0.11416
2 Encryption 0.324170 | 0.336126 | 0.324170 | 0.308056 | 550261.2 2048 0.19082
Decryption 0.350241 | 0.361116 | 0.350241 | 0.344511 | 435836.4 2048 0.18958
F3 Encryption 0.441622 | 0.449097 0.441622 | 0.431756 795007.8 3072 0.27660
Decryption 0.481054 | 0.493680 | 0.481054 | 0.468236 623562.8 3072 0.26626
4 Encrypt@on 0.619900 | 0.674048 | 0.619980 | 0.586551 1038807 4096 0.32416
Decryption 0.796081 | 0.813936 | 0.796081 | 0.775069 | 812018.8 4096 0.57796
F5 Encrypt@on 1.036422 1.243964 1.036422 | 0.937621 1284336 5120 0.39270
Decryption 1.099447 1.128025 1.099447 1.055004 1000971 5120 0.87300
F6 Encryption 1.167818 | 1.248574 1.167818 1.135472 1528213 6144 0.52178
Decryption 1.303467 1.318073 1.303467 1.276176 1189008 6144 1.13798
7 Encryption 1.366921 1.398961 1.366921 1.338915 1773615 7168 0.59318
Decryption 1.512991 1.543327 1.512991 1.472157 1377745 7168 1.25072
Fs Encryption 1.598759 1.649303 1.598759 1.559754 2017213 8192 0.78158
Decryption 1.708430 | 1.765692 1.70843 1.687031 1565704 8192 1.19362
F9 Encryption 1.813389 1.826192 1.813389 1.795187 2263234 9216 0.92804
Decryption 1.936924 | 2.000418 1.936924 | 1.900602 1753950 9216 1.15120
F10 Encryption 2.100701 | 2.169962 | 2.100701 | 2.039848 2517554 10240 1.08728
Decryption 2.276966 | 2.480676 | 2.276966 | 2.184023 1951457 10240 1.29348

Source: Prepared by Authors MATLAB output, (2024).
The Discussion of the Results:

The provided tables present a comprehensive analysis
of various metrics, including encryption and decryption
times, memory sizes, file sizes, effort, and optimization
results for files F1 to F10 using the ECDH_ANN
encryption algorithm. These metrics are crucial for
evaluating the performance and efficiency of the
algorithm, particularly in scenarios where data security
and computational resources are of utmost importance.
The table (2) clearly demonstrates a consistent trend of
increasing encryption and decryption times as the file
sizes grow larger. This trend expected, as larger files
necessitate resources for

more computational

processing. Additionally, variations in encryption and

21

decryption times among files of the same size indicate
potential disparities in data complexity or structure,
which can influence the algorithm's performance. It
observed that both encryption and decryption times
increase with larger file sizes.

Furthermore, by analyzing growth rate, coefficient of
determination (R2), and mean square error (RMSE)
values, insights into the algorithm's scalability and
accuracy can gained. The high R? values and low
RMSE values for both encryption and decryption
indicate that linear and polynomial functions are
suitable for accurately estimating processing times,
which can

be represented symbolically as O(n"k) see fig(5).

Ibrahim et al., Graduate College Journal - NU Vol.19 -2024, No. (11), 15 - 25

5

4
=
] 3
=]
(3]
b
o 2
£
-

1 /

0

10KB 20KB 30KB 40KB 50KB 60KB 70KB 80KB 90KB 100KB
File size (K byte)
== Encryption e Decryption

Figure (5): Growth Rate. Source: Prepared by Authors MATLAB output, (2024).

Regarding encryption, the best execution time recorded 0.209113 seconds, the worst is 2.480676 seconds, and
at 0.200457 seconds, the worst at 2.169962 seconds, the average execution time is 1.16259372 seconds see
and an average execution time of 1.06844208 seconds. Fig (6).
Similarly, for decryption, the best execution time is
3
2.5 H Encryption ® Decryption
i} 2
3
x 1.5
[}]
<))
E 1
'—
0.5
0
Best Average Worst
The Cases

Figure (6): The Best, Average and Worst Cases of Time Execution. Source: Prepared by Authors MATLAB output,
(2024).

Additionally, the analysis of memory sizes reveals the required for encryption and decryption processes
algorithm's efficiency in utilizing memory resources. remain relatively stable, indicating consistent resource
Despite variations in file sizes, the memory sizes allocation regardless of the file size see Fig (7).

in 3000000 B Encryption m Decryption

=

>

£ 2000000

s

w

> 1000000

o

S

g 0

10KB 20KB 30KB 40KB 50KB 60KB 70KB 80KB 90KB 100KB
File size (K byte)

Figure (7): The Memory Sizes Required for Encryption and Decryption Source: Prepared by Authors MATLAB output,
(2024).

22

Ibrahim et al., Graduate College Journal - NU Vol.19 -2024, No. (11), 15 - 25

The discussion on file size preservation throughout the
encryption and decryption processes highlights the
algorithm's ability to maintain data integrity without
altering the file sizes. This feature is essential for
applications that require data preservation and integrity
assurance.

Furthermore, the discussion emphasizes that the
ECDH_ANN encryption algorithm maintains a
constant file size, which sets it apart from other
algorithms that often result in file size increases. This
file size constancy following encryption serves as an
indicator of algorithm quality. The choice of encryption
method depends on specific requirements, as some
methods may be more space-efficient and provide
better protection, while others can lead to larger files
encryption. The indicate that the
ECDH_ANN method requires the least effort in the

after results
best and average cases but the most effort in the worst
case. In terms of decryption efficiency, the effort
required for encryption increases as the file size grows.
In addition, the optimization results shed light on the
algorithm's computational complexity and potential for
performance enhancement. While the algorithm
achieves acceptable processing times for smaller files,
there is room for improvement in handling larger files
more efficiently.

Lastly, it should be note that the encryption and
decryption processes of the ECDH_ANN algorithm
exhibit the same convergence. However, encryption
typically involves more operations compared to
decryption. Addition is the most frequently used
operation, while division is the least frequent.

To summarize, the tables provide a comprehensive
analysis of various metrics, revealing insights into the
performance, efficiency, and characteristics of the
ECDH_ANN encryption algorithm. The findings
highlight areas for improvement and optimization,
especially for handling larger files more efficiently.
The algorithm demonstrates its ability to maintain data
integrity and utilize

effectively computational

resources.

23

The execution time of the decryption operation is
typically about half or less than that of the encryption
operation. like
ECDH_ANN (Elliptic Curve Diffie-Hellman with
Artificial Neural Networks), encryption involves more

In many encryption algorithms

complex computations, such as key generation and
performing mathematical operations on the encrypted
data. In contrast, the decryption process generally
requires simpler operations, such as using the private
key to reverse these computations, making it less
This

complexity explains why decryption time is often

computationally intensive. difference in
significantly shorter than encryption time.

The memory size required during the decryption
operation is smaller than during encryption. The
encryption process usually demands additional
memory to store data such as public keys and
intermediate calculations related to complex
mathematical transformations (e.g., in neural network-
based cryptography). In decryption, only the private
key is typically required, with fewer intermediate steps
or additional data to be stored. As a result, decryption
consumes less memory compared to encryption.

The file size after the decryption operation is the same
as the original size before encryption. The decryption
process is designed to restore the original data from its
encrypted form.

including ECDH_ANN, the file size after decryption

In most encryption algorithms,

matches the size before encryption. This means that the
encrypted data is simply a transformed version of the
original, and when decrypted with the correct key, the
original data is fully recovered without any loss of
information.

Conclusions:

In conclusion, the complexity analysis and efficiency
evaluation of the ECDH_ANN encryption algorithm
demonstrate consistent trends in encryption and
decryption times, memory usage, and file sizes as file
sizes increase. Encryption and decryption times
increase noticeably with larger file sizes, while
memory usage remains stable, indicating effective

resource management.

Ibrahim et al., Graduate College Journal - NU Vol.19 -2024, No. (11), 15 - 25

An important feature of the algorithm is its ability to
maintain consistent file sizes during encryption and
decryption, setting it apart from other algorithms that
often inflate file sizes. This consistent file size
preservation is a positive indicator of algorithm quality.
The effort required for encryption varies across
scenarios, with minimal effort observed in optimal and
average cases, and maximal effort in worst-case
scenarios. Decryption efficiency improves as file sizes
increase. Optimization findings highlight potential
areas for enhancing the algorithm's computational
complexity and performance, particularly in managing
larger files more effectively. Although processing
times for smaller files are acceptable, there is room for
improvement in handling larger files. It's noteworthy
that the encryption and decryption processes of the
ECDH_ANN algorithm converge similarly, with
encryption involving more operations than decryption.
Addition is the most frequently used operation,
whereas division is the least frequent.These findings
provide a comprehensive analysis across various
metrics,
efficiency, and characteristics of the ECDH_ANN

offering insights into the performance,
encryption algorithm. This understanding can guide
further refinements and optimizations aimed at
enhancing the algorithm's capability to manage larger
files and optimize resource utilization. The algorithm
demonstrates its ability to maintain data integrity and
efficiently utilize computational resources, making it
suitable for scenarios prioritizing both data security and
computational efficiency.
Recommendations and Further Studies
Based on the analysis and findings presented in the text,
here are some recommendations and suggestions for
further studies:
1. Optimization: Focus on improving encryption and
decryption efficiency for larger files, possibly through
parallel computing or distributed systems.

2. Algorithm Comparison: Compare ECDH_ANN
with other encryption algorithms to understand

performance, efficiency, and security trade-offs.

24

3. Security Analysis: Conduct a thorough security

assessment to identify and mitigate potential
vulnerabilities in ECDH_ANN.
4. Real-world Implementation: Validate

ECDH_ANN's performance in diverse environments to
assess practical viability.

5. Scalability Analysis: Evaluate how ECDH_ANN
handles increasing file sizes to determine scalability
and resource requirements.

6. Neural Network Impact: Investigate the influence of
different neural network architectures and parameters
on ECDH_ANN's efficiency.

7. Energy Efficiency: Analyze ECDH_ANN's energy
consumption compared to other algorithms to optimize
its energy efficiency.

8. Application-specific Studies: Conduct studies in
0T, cloud computing, and mobile applications to
assess ECDH_ANN's performance, efficiency, and
security suitability. Comparing it with other algorithms
can help identify the best fit for specific use cases.
Reference:

Alesawy, O., & Muniyandi, R. (2016). Elliptic curve
Diffie-Hellman random keys using artificial neural
network and genetic algorithm for secure data over
private cloud. *Information Technology Journal, 15,
77-83. https://doi.org/10.3923/itj.2016.77.83

Al-nima, R. R., Muhanad, L., & Hassan, S. Q. (2009).
Data

encryption using backpropagation neural
network.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein,
C. (1990). Introduction to algorithms (2nd ed.). The
MIT Press New York San Francisco St. Louis Montréal
Toronto .

Chakraborty, R. C. (2010). Back propagation network
soft computing back propagation network. Retrieved
from http://www.myreaders.info/2010

Duan, X., Guo, D., Liu, N., Li, B., Gou, M., & Qin, C.

(2020). A new high capacity image steganography

method combined with image elliptic curve

cryptography and deep neural network. IEEE Access,
8, 24120-24128.
https://doi.org/10.1109/ACCESS.2020.297152

https://doi.org/10.3923/itj.2016.77.83
http://www.myreaders.info/2010
https://doi.org/10.1109/ACCESS.2020.297152

Ibrahim et al., Graduate College Journal - NU Vol.19 -2024, No. (11), 15 - 25

Laskari, E. C., Meletiou, G. C., Stamatiou, A., &
Vrahatis, M. N. (2007). Assessing the effectiveness of
artificial neural networks on problems related to elliptic
curve cryptography. Mathematical and Computer
Modelling, 46(7-8), 174-179.
https://doi.org/10.1016/j.mcm.2006.12.013

Naser, A., & Zolkipli, M. F. (2016). A conceptual
model using elliptic curve Diffie-Hellman with an

artificial neural network over cloud computing. In
National Conference for Postgraduate Research.

C., & Pelzl, J. (1998).
cryptography. Springer. https://doi.org/10.1007/978-3-
642-04101-3

Singh, P., & Singh, H. (2012). Cryptography in
structure adaptable digital neural networks. National

Paar, *Understanding

25

Monthly Refereed Journal of Research in Science and
Technology, 1 (12), 35-44.

Singh, A., & Aartinandal. (2020). Neural cryptography
for secret key exchange and encryption with AES.
International Journal of Advanced Research in
Computer Science and Software Engineering, 3 (5),

376-381.

https://doi.org/10.1016/j.mcm.2006.12.013
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.1007/978-3-642-04101-3

