

51

 جامعة النيلين - مجلة الدراسات العليا
 (11)العدد ،2024– (19)المجلد

 6228-1858 الرقم الدولي الموحد للدوريات:

Graduate College Journal – NU
Vol.19 -2024, No. (11)
ISSN: 1858-6228, http://www.neelain .edu.sd

Analyzing the Efficiency and Complexity of Cryptography Algorithm
A Focus on Elliptic Curve Diffie-Hellman (ECDH) Hybrid with Artificial Neural Networks (ANN)

Wafa Aref Ahmed Ibrahim1*, Fakhreddin Abbas2, and Fakhereldeen E.E Musa1

1Department of Computer Science, Faculty of Computer Science and Information Technology, Al-Neelain

University, Khartoum, Sudan
2Department of Statistics, Faculty of Mathematical Sciences and Statistics, Al-Neelain University, Khartoum,

Sudan.
*Corresponding author email: wafa.2011@live.com

Abstract

Ensuring data security is crucial in today's digital environment, where information exchange happens rapidly and

continuously. Encryption plays a vital role in safeguarding sensitive data from unauthorized access and breaches.

This study focuses on analyzing the encryption algorithm using hybrid elliptic curve Diffie-Hellman (ECDH) with

Artificial Neural Networks (ANN), known as ECDH_ANN. Multiple input scenarios were evaluated, measuring

memory complexities, operational requirements, and efficiency metrics to determine algorithm effectiveness. The

primary challenge lies in improving encryption algorithms, particularly elliptic curves, and studying their

complexities and performance. The ultimate goal is to measure efficiency and calculate complexities through

evaluating various input scenarios, estimating execution time, memory usage, and optimizing encryption and

decryption processes. This study was conducted across 50 different-sized files. The results show that as the file

size grows, the encryption and decryption times also rise, while memory usage stays relatively constant, indicating

efficient resource management. The algorithm maintains consistent file sizes during encryption and decryption

processes, distinguishing it from algorithms that may inflate file sizes. The study also demonstrates that encryption

and decryption operations exhibit linear growth rates. Overall, the ECDH_ANN algorithm stands out for its ability

to maintain data integrity and use computational resources efficiently, making it perfectly suited for environments

prioritizing data security and computational efficiency. The study recommends using this algorithm due to its

quality and suggests comparing it with other algorithms for further analysis.

Key words: Encryption, Data Security, Cryptographic Algorithms, ECDH Hybrid, Artificial Neural Networks,

Computational Efficiency, Data Integrity.

Introduction

In the contemporary digital landscape, the escalating

volume of sensitive data exchanged across networks

underscores the paramount importance of encryption

mechanisms in ensuring information security.

Encryption stands as a fundamental pillar in

safeguarding data integrity and confidentiality,

mitigating the risks posed by unauthorized access and

malicious intrusions. As cyber, threats continue to

evolve in sophistication and frequency, the adoption of

robust encryption methodologies becomes imperative

to fortify the resilience of digital infrastructures.

Artificial neural networks (ANNs) have emerged as a

transformative tool in augmenting the capabilities of

cryptographic algorithms, amplifying their efficacy

and resilience against adversarial attacks. ANNs,

inspired by the complex interconnected structure of the

human brain, offer unparalleled computational power

and adaptability, enabling innovative approaches to

encryption and decryption processes. Through iterative

learning and pattern recognition, ANNs empower

cryptographic systems to enhance their ability to detect

anomalies, resist cryptanalysis, and optimize resource

utilization.

mailto:wafa.2011@live.com

Ibrahim et al., Graduate College Journal – NU Vol.19 -2024, No. (11), 15 - 25

51

The primary objective of this research is to analyze the

complexities and efficiency metrics inherent in

cryptographic algorithms, with a particular focus on the

integration of artificial neural networks within the

Elliptic Curve Diffie-Hellman (ECDH) hybrid

algorithm. The study seeks to ascertain the efficacy of

the ECDH_ANN algorithm in preserving data integrity

and computational efficiency across diverse

operational scenarios. Additionally, the research

endeavors to validate hypotheses regarding the

scalability, accuracy, and resilience of the

ECDH_ANN algorithm compared to conventional

encryption methodologies.

Structured into distinct sections, this paper unfolds as

follows: First, an overview of the increasing

significance of encryption in the digital age presented,

contextualizing the necessity for advanced

cryptographic techniques. Subsequently, the role of

artificial neural networks in enhancing cryptographic

algorithms elucidated, highlighting their

transformative impact on encryption methodologies.

Following this, the research objectives and hypotheses

delineated, providing a clear roadmap for the ensuing

analysis and evaluation. Finally, the structure of the

paper outlined, delineating the thematic organization of

subsequent sections and the flow of information

therein. Through this structured approach, this paper

endeavors to contribute nuanced insights into the realm

of cryptographic algorithms, underscoring the pivotal

role of artificial neural networks in fortifying data

security in the digital age.

Literature Review:

This literature review examines the integration of

Elliptic Curve Diffie-Hellman (ECDH) with artificial

neural networks (ANNs) in cryptographic systems. The

Diffie-Hellman key exchange (DHKE) introduced

asymmetric encryption but lacks authentication

mechanisms, leaving it vulnerable to man-in-the-

middle attacks. The ECDH protocol addresses these

issues by employing elliptic curve cryptography,

enhancing both security and efficiency.

Artificial neural networks (ANNs) inspired by the

human brain's structure and functioning, bring unique

capabilities in pattern recognition, optimization, and

learning. They have been explored in encryption and

decryption processes to improve security and

computational efficiency. Various methodologies

have been employed in relevant studies to evaluate

cryptographic algorithms. For instance, Othman

Alesawy and Ravie Chandren Muniyandi (2016)

conducted a study on secure data transmission over

private clouds using ECDH combined with ANN and

genetic algorithms, showing enhancements in time

efficiency, performance, and accuracy (Alesawy &

Muniyandi, 2016, p. 80). Additionally, Aws Naser et

al. (2016) proposed a conceptual model integrating

ECDH with ANNs for cloud computing, emphasizing

practical applications of neural networks in

cryptographic systems (Naser & Zolkipli, 2016).

DUAN et al. (2020) introduced a novel image

steganography method that integrates Image Elliptic

Curve Cryptography (ECC) with Deep Neural

Networks (DNN). This method prioritizes secure

embedding, payload capacity, and human-perceivable

image quality. It involves Discrete Cosine Transform

(DCT) for the secret image, ECC encryption, and

SegNet DNN to increase steganography capacity.

Experimental results demonstrated efficient pixel

allocation, high steganography capacity, and

improved image quality metrics (PSNR and SSIM),

effectively concealing data and enhancing image

quality (Duan et al., 2020). However, existing studies

often face challenges related to scalability,

computational complexity, and real-world

applicability. This review aims to address these gaps

by evaluating the complexities and efficiency of the

ECDH hybrid algorithm using artificial neural

networks. It seeks to identify optimal encryption

solutions that balance security and computational

efficiency through comprehensive analyses of various

input scenarios and memory complexities.

Moreover, the study aims to provide insights into the

scalability, accuracy, and efficiency of the ECDH

Ibrahim et al., Graduate College Journal – NU Vol.19 -2024, No. (11), 15 - 25

51

hybrid algorithm under diverse conditions, aiming to

contribute to a deeper understanding of its performance

in cryptographic applications.

Methodology

The research design and methodology employed in this

study aim to comprehensive analyze the complexities

and efficiency of cryptographic algorithms,

specifically focusing on the Elliptic Curve Diffie-

Hellman (ECDH) hybrid algorithm using artificial

neural networks (ANNs). The methodology

encompasses data collection methods, analysis

techniques, and criteria for measuring algorithm

quality and performance see Fig(1).

Figure (1): Methodology

Data Collection:

Data collection for this study involves gathering

information on various input scenarios, memory

complexities, operational requirements, and efficiency

metrics related to the ECDH hybrid algorithm. Primary

data sources include cryptographic literature, research

papers, and technical documentation detailing

algorithm specifications and performance metrics.

Additionally, empirical data collected through

simulations, experiments, or real-world

implementations to validate algorithmic performance

under diverse conditions. We put the texts we want to

encrypt in text files of different sizes. Each file will be

duplicated several times, where we will get 10 files of

different sizes. Each file will be repeated five times

with different texts, which means we have 50 files in

total. We will name the files in ascending order

according to their size, where we have very small files,

small files, medium files, large files and very large

files. For example, if we assume that we have a very

small file known as "F1", we will create five other files

of the same size but with different contents, and their

labels become "F11", "F12", "F13", "F14", "F15". We

will repeat this process with the rest of the files to

obtain 50 files, where we have groups of five files of

the same size but different contents. File sizes were

graded and include very small files, small files,

medium files, large files, and very large files, based on

previous studies and their recommendations. In this

way, we will be able to study the changes that may

occur within files of the same size but with different

contents, in order to understand the performance of the

algorithms and evaluate them based on the specified

criteria. The data is laid out and replicated in the

following table:

Table (1): Data Structure:

Frequency Scale File #

F15 F14 F13 F12 F11 Name
F1 1

10 10 10 10 10 Size

F25 F24 F23 F22 F21 Name
F2 2

20 20 20 20 20 Size

F35 F34 F33 F32 F31 Name
F3 3

30 30 30 30 30 Size

F45 F44 F43 F42 F41 Name
F4 4

40 40 40 40 40 Size

F55 F54 F53 F52 F51 Name
F5 5

50 50 50 50 50 Size

F65 F64 F63 F62 F61 Name
F6 6

60 60 60 60 60 Size

F75 F74 F73 F72 F71 Name
F7 7

70 70 70 70 70 Size

F85 F84 F83 F82 F81 Name
F8 8

80 80 80 80 80 Size

F95 F94 F93 F92 F91 Name
F9 9

90 90 90 90 90 Size

F105 F104 F103 F102 F101 Name
F10 10

100 100 100 100 100 Size

Analysis Techniques:

The analysis of cryptographic algorithm complexities

and efficiency entails several steps aimed at evaluating

Ibrahim et al., Graduate College Journal – NU Vol.19 -2024, No. (11), 15 - 25

51

algorithmic performance across different criteria.

These steps include:

1. Identification of Key Parameters: Define the key

parameters relevant to the analysis, such as encryption

and decryption times, memory sizes, file sizes,

computational resources, and optimization results.

2. Evaluation of Algorithm Performance: Assess the

performance of the ECDH hybrid algorithm using

ANNs across various input scenarios. This involves

conducting simulations or experiments to measure

encryption and decryption times, memory usage, and

computational efficiency under different conditions.

3. Comparative Analysis: Compare the performance of

the ECDH hybrid algorithm 4. Criteria for Measuring

Algorithm Quality: Define criteria for measuring

algorithm quality and performance, including

efficiency, accuracy, complexity, and scalability,

security, and execution time. These criteria serve as

benchmarks for evaluating the effectiveness of the

ECDH hybrid algorithm in real-world scenarios.

Tools and Software:

Data analysis and visualization are essential

components of this study, requiring specialized tools

and software for processing and interpreting results.

Commonly used tools include MATLAB, Python with

libraries such as NumPy and Pandas, R, and statistical

software packages. These tools facilitate data analysis,

statistical modeling, visualization of results, and

generation of insights from empirical data.

Furthermore, visualization techniques such as charts,

graphs, and plots are employed to present findings

effectively and facilitate understanding. Visualization

tools like Matplotlib, Seaborn, and Tableau utilized to

create visual representations of algorithmic

performance metrics, aiding in the interpretation and

communication of results to stakeholders and

researchers.

Algorithm Description:

The ECDH (Elliptic Curve Diffie-Hellman) hybrid

algorithm represents a sophisticated cryptographic

technique that combines the principles of elliptic curve

cryptography with the computational power of

artificial neural networks (ANNs). This section

provides a detailed explanation of the ECDH hybrid

algorithm, highlighting its integration with ANNs,

neural network architecture, parameters, and the

cryptographic principles underlying its operation.

The ECDH hybrid algorithm based on the Diffie-

Hellman key exchange protocol, which enables two

parties to securely establish a shared secret key over an

insecure channel. However, unlike the traditional

Diffie-Hellman protocol, which operates in a finite

field, the ECDH hybrid algorithm leverages elliptic

curve cryptography for enhanced security and

efficiency.

Integration with Artificial Neural Networks:

In the ECDH hybrid algorithm, artificial neural

networks employed to optimize key generation,

encryption, and decryption processes. The neural

network architecture consists of multiple layers,

including an input layer, hidden layers, and an output

layer. The input layer configured to accept input data,

such as plaintext or cipher text, while the output layer

produces the final encrypted or decrypted output see

Fig(2). The hidden layers contain neurons responsible

for processing input data and extracting meaningful

features relevant to the encryption process.

Figure (2):Hybrid Encryption,Decryption and Key

Generation using ECDH and ANN

Source: Prepared by Author using Drow.io

Programme, (2024).

The Diffie-Hellman Parameters:

The Diffie-Hellman key exchange (DHKE), proposed

by Whitfield Diffie and Martin Hellman in 1976, is the

Ibrahim et al., Graduate College Journal – NU Vol.19 -2024, No. (11), 15 - 25

51

first asymmetric cryptographic protocol published

openly. It enables two parties, usually named Alice and

Bob, to establish a shared secret key over an insecure

channel. DHKE operates in a prime field (Zp), utilizing

exponentiation, which is computationally easy to

compute but difficult to reverse. Both parties agree on

domain parameters, including a prime number (p) and

a generator (α), which are publicly known. Each party

selects a private key (a and b) and computes their

respective public keys (A and B) by exponentiating the

generator α to their private keys modulo p. These

public keys are exchanged over the insecure channel.

Using the received public key, each party computes the

shared secret key by raising it to their private key

modulo p (Paar & Pelzl, 1998). This shared key enables

secure communication using symmetric encryption

algorithms. DHKE's security relies on the

computational difficulty of the discrete logarithm

problem. Attackers, with access only to the public

parameters and keys, would find it challenging to

derive the private keys and the shared secret key.

However, the basic DHKE version is vulnerable to

man-in-the-middle attacks and lacks authentication.

Additional measures like digital signatures are

necessary for ensuring integrity and authenticity in

practical implementations. The basic idea behind the

DHKE is that exponentiation in 𝑍𝑝, p prime, is a one-

way function and that exponentiation is commutative,

i.e., (Paar & Pelzl, 1998; Singh & Aartinandal, 2020)

𝑘 = (𝑎𝑥)𝑦
≡ (𝑎𝑦)𝑥

𝑚𝑜𝑑 𝑝 (1)

The value 𝑘 ≡ (𝑎𝑥)𝑦 ≡ (𝑎𝑦)𝑥 𝑚𝑜𝑑 𝑝 is the joint

secret, which can be used as the session key between

the two parties. Let us now consider how the Diffie–

Hellman key exchanges protocol over 𝑍𝑝 works. In this

protocol, we have two parties, Alice and Bob, who

would like to establish a shared secret key. There is

possibly a trusted third party that properly chooses the

public parameters, which need for the key exchange.

However, it is also possible that Alice or Bob generate

the public parameters. Strictly speaking, the DHKE

consists of two protocols, the set-up protocol and the

main protocol, which performs the actual key

exchange. The set-up protocol consists of the following

steps: Diffie–Hellman Set-up : (Paar & Pelzl, 1998;

Singh & Aartinandal, 2020)

1. Choose a large prime p.

2. Choose an

integer a ∈

{2, 3, . . . ,

p − 2} .

 3. Publish p

and a.

These two values are sometimes referred to as

domain parameters. If Alice and Bob both know the

public parameters p and a computed in the set-up

phase, they can generate a joint secret key k with the

following key-exchange

protoco(Paar & Pelzl, 1998)l:

Alice Bob

choose a = kpr,A ∈ {2, . . . , p − 2} choose b = kpr,B ∈ {2, . . . , p − 2}

𝐴 = 𝑘𝑝𝑢𝑏, 𝐴 ≡ 𝑎𝑎
𝑚𝑜𝑑 𝑝 compute

 compute 𝐵 = 𝑘𝑝𝑢𝑏, 𝐵 ≡ 𝑎𝑏
𝑚𝑜𝑑 𝑝

 kpub,A =A

 kpub,B =B

𝑘𝐴𝐵 = ≡ 𝐵𝑎𝑚𝑜𝑑𝑝𝑘𝑝𝑢𝑏,𝐵
𝑘𝑝𝑟,𝐴

 𝑘𝐴𝐵 = ≡ 𝐴𝑏𝑚𝑜𝑑𝑝𝑘𝑝𝑢𝑏,𝐴
𝑘𝑝𝑟,𝐵

Neural Network Parameters:

The neural network parameters, including the number

of layers, the number of neurons in each layer, and

activation functions, carefully tuned to optimize

algorithm performance see Fig (3). Common activation

functions used in the ECDH hybrid algorithm include

sigmoid, tanh, and ReLU, depending on the specific

requirements of the encryption task. Additionally,

training algorithms such as backpropagation and

gradient descent employed to iteratively adjust the

neural network weights and biases to minimize

prediction errors.

Ibrahim et al., Graduate College Journal – NU Vol.19 -2024, No. (11), 15 - 25

02

Neural networks have been used in cryptography

operations because of their many advantages. Several

algorithms have been proposed that rely on different

types of neural networks to carry out the process of

encryption and decryption. Among these algorithms,

the backward backpropagation network is cited as an

example. In the process of encryption using neural

network, the steps can be summarized as follows

(Singh and Singh (2012), Singh and Aartinandal

(2020), Chakraborty (2010), and Al-nima, Muhanad,

and Hassan (2009):

1. Enter the text to be encrypted.

2. Convert text to ASCII CODE representation.

3. Create a neural network consisting of an input layer,

an output layer, and a hidden layer. The number of

neurons in the input layer is equal to the size of the text

to be encoded, the number of neurons in the hidden

layer is specified (k), and the number of neurons in the

output layer is equal to the size of the ciphertext.

4. Generate weights between the input layer and the

hidden layer, and between the hidden layer and the

output layer.

5. Generate thresholds for the hidden layer.

6. Train the neural network by calculating the error

rate, updating weights, and the spread of error across

the network.

7. Calculate the output layer using trained weights.

8. Convert ASCII CODE values to the appropriate

characters.

9. Encode text using calculated results.

Figure (3): Artificial Neural Networks (ANN) (]

Singh, P., & Singh, H. (2012))

Criteria of Measuring the Complexities for

Cryptographic Algorithms:

The efficiency measurement criteria for different

encryption algorithms include algorithm execution

time, file size, space complexities, number of

operations, time complexity, better, medium, and worst

cases, execution cost, effort expended, optimization,

and algorithm efficiency. These metrics help determine

the time required to execute the algorithm, the size of

the file after encryption, the computational complexity

of the algorithm, the best, worst, and average state of

the algorithm's performance, execution cost, the

amount of effort expended, and the efficiency of the

algorithm (Laskari et al., 2007). The execution time is

determined by multiplying the execution time taken by

the number of processors used, while the amount of

effort expended is determined by determining the main

fundamental operation of the problem and calculating

the number of basic operations performed by the

algorithm . The efficiency of an algorithm calculated

by multiplying the number of processors used to

accomplish a particular operation by the time required

to perform that operation. (Cormen et al., 1990)

Figure (4): An Algorithm to Measure Efficiency of

Encryption ECDH using ANN

The Results of Execution:

Implementing and evaluating encryption and

decryption algorithms is vital in information security.

This process assesses the performance of the

ECDH_ANN algorithm by applying it to test files and

measuring execution time, memory consumption, and

Ibrahim et al., Graduate College Journal – NU Vol.19 -2024, No. (11), 15 - 25

05

complexity. Execution time depends on data volume,

algorithm complexity, and system capacity, measured

in seconds. Algorithm growth rate, represented by

various functions, estimates efficiency and

performance. Complexity analysis categorizes cases

into best, worst, and average, studying memory usage

and its impact on performance. File size affects

memory usage and performance, aiding in

optimization. Effort measures the work needed to solve

problems with the algorithm, determining efficiency

for files of different sizes. Optimization evaluates best,

worst, and average cases to improve performance. The

number of operations, including basic and iterative

calculations, impacts software efficiency, aiming to

reduce steps for better performance and resource use .

Table (2): Performance Evaluation of ECDH Hybrid Algorithm with ANN in Cryptographic Systems: Encryption and

Decryption for Repeated Files (F1 - F10)

Submitted

Effort(s)

File

size

(byte)

Memory

size (byte)

Best

cases(s)

Average

cases(s)

Worst

cases(s)

Time

excute(s)
Operation File

0.11588 1024 303883.4 0.200457 0.21464 0.267039 0.214640 Encryption
F1

0.11416 1024 246678 0.209113 0.223362 0.272167 0.223362 Decryption

0.19082 2048 550261.2 0.308056 0.324170 0.336126 0.324170 Encryption
F2

0.18958 2048 435836.4 0.344511 0.350241 0.361116 0.350241 Decryption

0.27660 3072 795007.8 0.431756 0.441622 0.449097 0.441622 Encryption
F3

0.26626 3072 623562.8 0.468236 0.481054 0.493680 0.481054 Decryption

0.32416 4096 1038807 0.586551 0.619980 0.674048 0.619900 Encryption
F4

0.57796 4096 812018.8 0.775069 0.796081 0.813936 0.796081 Decryption

0.39270 5120 1284336 0.937621 1.036422 1.243964 1.036422 Encryption
F5

0.87300 5120 1000971 1.055004 1.099447 1.128025 1.099447 Decryption

0.52178 6144 1528213 1.135472 1.167818 1.248574 1.167818 Encryption
F6

1.13798 6144 1189008 1.276176 1.303467 1.318073 1.303467 Decryption

0.59318 7168 1773615 1.338915 1.366921 1.398961 1.366921 Encryption
F7

1.25072 7168 1377745 1.472157 1.512991 1.543327 1.512991 Decryption

0.78158 8192 2017213 1.559754 1.598759 1.649303 1.598759 Encryption
F8

1.19362 8192 1565704 1.687031 1.70843 1.765692 1.708430 Decryption

0.92804 9216 2263234 1.795187 1.813389 1.826192 1.813389 Encryption
F9

1.15120 9216 1753950 1.900602 1.936924 2.000418 1.936924 Decryption

1.08728 10240 2517554 2.039848 2.100701 2.169962 2.100701 Encryption
F10

1.29348 10240 1951457 2.184023 2.276966 2.480676 2.276966 Decryption

Source: Prepared by Authors MATLAB output, (2024).

 The Discussion of the Results:

The provided tables present a comprehensive analysis

of various metrics, including encryption and decryption

times, memory sizes, file sizes, effort, and optimization

results for files F1 to F10 using the ECDH_ANN

encryption algorithm. These metrics are crucial for

evaluating the performance and efficiency of the

algorithm, particularly in scenarios where data security

and computational resources are of utmost importance.

The table (2) clearly demonstrates a consistent trend of

increasing encryption and decryption times as the file

sizes grow larger. This trend expected, as larger files

necessitate more computational resources for

processing. Additionally, variations in encryption and

decryption times among files of the same size indicate

potential disparities in data complexity or structure,

which can influence the algorithm's performance. It

observed that both encryption and decryption times

increase with larger file sizes.

Furthermore, by analyzing growth rate, coefficient of

determination (R²), and mean square error (RMSE)

values, insights into the algorithm's scalability and

accuracy can gained. The high R² values and low

RMSE values for both encryption and decryption

indicate that linear and polynomial functions are

suitable for accurately estimating processing times,

which can

be represented symbolically as O(n^k) see fig(5).

Ibrahim et al., Graduate College Journal – NU Vol.19 -2024, No. (11), 15 - 25

00

Figure (5): Growth Rate. Source: Prepared by Authors MATLAB output, (2024).

Regarding encryption, the best execution time recorded

at 0.200457 seconds, the worst at 2.169962 seconds,

and an average execution time of 1.06844208 seconds.

Similarly, for decryption, the best execution time is

0.209113 seconds, the worst is 2.480676 seconds, and

the average execution time is 1.16259372 seconds see

Fig (6).

Figure (6): The Best, Average and Worst Cases of Time Execution. Source: Prepared by Authors MATLAB output,

(2024).

Additionally, the analysis of memory sizes reveals the

algorithm's efficiency in utilizing memory resources.

Despite variations in file sizes, the memory sizes

required for encryption and decryption processes

remain relatively stable, indicating consistent resource

allocation regardless of the file size see Fig (7).

Figure (7): The Memory Sizes Required for Encryption and Decryption Source: Prepared by Authors MATLAB output,

(2024).

0

1

2

3

4

5

10KB 20KB 30KB 40KB 50KB 60KB 70KB 80KB 90KB 100KB

Ti
m

e
 e

xc
u

te
(s

)

File size (K byte)
Encryption Decryption

0

0.5

1

1.5

2

2.5

3

Best Average Worst

Ti
m

e
 e

xc
u

te
(s

)

The Cases

Encryption Decryption

0

1000000

2000000

3000000

10KB 20KB 30KB 40KB 50KB 60KB 70KB 80KB 90KB 100KB

M
e

m
o

ry
 s

iz
e

 (
b

yt
e

)

File size (K byte)

Encryption Decryption

Ibrahim et al., Graduate College Journal – NU Vol.19 -2024, No. (11), 15 - 25

02

The discussion on file size preservation throughout the

encryption and decryption processes highlights the

algorithm's ability to maintain data integrity without

altering the file sizes. This feature is essential for

applications that require data preservation and integrity

assurance.

Furthermore, the discussion emphasizes that the

ECDH_ANN encryption algorithm maintains a

constant file size, which sets it apart from other

algorithms that often result in file size increases. This

file size constancy following encryption serves as an

indicator of algorithm quality. The choice of encryption

method depends on specific requirements, as some

methods may be more space-efficient and provide

better protection, while others can lead to larger files

after encryption. The results indicate that the

ECDH_ANN method requires the least effort in the

best and average cases but the most effort in the worst

case. In terms of decryption efficiency, the effort

required for encryption increases as the file size grows.

In addition, the optimization results shed light on the

algorithm's computational complexity and potential for

performance enhancement. While the algorithm

achieves acceptable processing times for smaller files,

there is room for improvement in handling larger files

more efficiently.

Lastly, it should be note that the encryption and

decryption processes of the ECDH_ANN algorithm

exhibit the same convergence. However, encryption

typically involves more operations compared to

decryption. Addition is the most frequently used

operation, while division is the least frequent.

To summarize, the tables provide a comprehensive

analysis of various metrics, revealing insights into the

performance, efficiency, and characteristics of the

ECDH_ANN encryption algorithm. The findings

highlight areas for improvement and optimization,

especially for handling larger files more efficiently.

The algorithm demonstrates its ability to maintain data

integrity and effectively utilize computational

resources.

The execution time of the decryption operation is

typically about half or less than that of the encryption

operation. In many encryption algorithms like

ECDH_ANN (Elliptic Curve Diffie-Hellman with

Artificial Neural Networks), encryption involves more

complex computations, such as key generation and

performing mathematical operations on the encrypted

data. In contrast, the decryption process generally

requires simpler operations, such as using the private

key to reverse these computations, making it less

computationally intensive. This difference in

complexity explains why decryption time is often

significantly shorter than encryption time.

The memory size required during the decryption

operation is smaller than during encryption. The

encryption process usually demands additional

memory to store data such as public keys and

intermediate calculations related to complex

mathematical transformations (e.g., in neural network-

based cryptography). In decryption, only the private

key is typically required, with fewer intermediate steps

or additional data to be stored. As a result, decryption

consumes less memory compared to encryption.

The file size after the decryption operation is the same

as the original size before encryption. The decryption

process is designed to restore the original data from its

encrypted form. In most encryption algorithms,

including ECDH_ANN, the file size after decryption

matches the size before encryption. This means that the

encrypted data is simply a transformed version of the

original, and when decrypted with the correct key, the

original data is fully recovered without any loss of

information.

Conclusions:

In conclusion, the complexity analysis and efficiency

evaluation of the ECDH_ANN encryption algorithm

demonstrate consistent trends in encryption and

decryption times, memory usage, and file sizes as file

sizes increase. Encryption and decryption times

increase noticeably with larger file sizes, while

memory usage remains stable, indicating effective

resource management.

Ibrahim et al., Graduate College Journal – NU Vol.19 -2024, No. (11), 15 - 25

02

An important feature of the algorithm is its ability to

maintain consistent file sizes during encryption and

decryption, setting it apart from other algorithms that

often inflate file sizes. This consistent file size

preservation is a positive indicator of algorithm quality.

The effort required for encryption varies across

scenarios, with minimal effort observed in optimal and

average cases, and maximal effort in worst-case

scenarios. Decryption efficiency improves as file sizes

increase. Optimization findings highlight potential

areas for enhancing the algorithm's computational

complexity and performance, particularly in managing

larger files more effectively. Although processing

times for smaller files are acceptable, there is room for

improvement in handling larger files. It's noteworthy

that the encryption and decryption processes of the

ECDH_ANN algorithm converge similarly, with

encryption involving more operations than decryption.

Addition is the most frequently used operation,

whereas division is the least frequent.These findings

provide a comprehensive analysis across various

metrics, offering insights into the performance,

efficiency, and characteristics of the ECDH_ANN

encryption algorithm. This understanding can guide

further refinements and optimizations aimed at

enhancing the algorithm's capability to manage larger

files and optimize resource utilization. The algorithm

demonstrates its ability to maintain data integrity and

efficiently utilize computational resources, making it

suitable for scenarios prioritizing both data security and

computational efficiency.

Recommendations and Further Studies

Based on the analysis and findings presented in the text,

here are some recommendations and suggestions for

further studies:

1. Optimization: Focus on improving encryption and

decryption efficiency for larger files, possibly through

parallel computing or distributed systems.

 2. Algorithm Comparison: Compare ECDH_ANN

with other encryption algorithms to understand

performance, efficiency, and security trade-offs.

3. Security Analysis: Conduct a thorough security

assessment to identify and mitigate potential

vulnerabilities in ECDH_ANN.

4. Real-world Implementation: Validate

ECDH_ANN's performance in diverse environments to

assess practical viability.

5. Scalability Analysis: Evaluate how ECDH_ANN

handles increasing file sizes to determine scalability

and resource requirements.

6. Neural Network Impact: Investigate the influence of

different neural network architectures and parameters

on ECDH_ANN's efficiency.

7. Energy Efficiency: Analyze ECDH_ANN's energy

consumption compared to other algorithms to optimize

its energy efficiency.

8. Application-specific Studies: Conduct studies in

IoT, cloud computing, and mobile applications to

assess ECDH_ANN's performance, efficiency, and

security suitability. Comparing it with other algorithms

can help identify the best fit for specific use cases.

Reference:

Alesawy, O., & Muniyandi, R. (2016). Elliptic curve

Diffie-Hellman random keys using artificial neural

network and genetic algorithm for secure data over

private cloud. *Information Technology Journal, 15,

77-83. https://doi.org/10.3923/itj.2016.77.83

Al-nima, R. R., Muhanad, L., & Hassan, S. Q. (2009).

Data encryption using backpropagation neural

network.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein,

C. (1990). Introduction to algorithms (2nd ed.). The

MIT Press New York San Francisco St. Louis Montréal

Toronto .

Chakraborty, R. C. (2010). Back propagation network

soft computing back propagation network. Retrieved

from http://www.myreaders.info/2010

Duan, X., Guo, D., Liu, N., Li, B., Gou, M., & Qin, C.

(2020). A new high capacity image steganography

method combined with image elliptic curve

cryptography and deep neural network. IEEE Access,

8, 24120-24128.

https://doi.org/10.1109/ACCESS.2020.297152

https://doi.org/10.3923/itj.2016.77.83
http://www.myreaders.info/2010
https://doi.org/10.1109/ACCESS.2020.297152

Ibrahim et al., Graduate College Journal – NU Vol.19 -2024, No. (11), 15 - 25

01

 Laskari, E. C., Meletiou, G. C., Stamatiou, A., &

Vrahatis, M. N. (2007). Assessing the effectiveness of

artificial neural networks on problems related to elliptic

curve cryptography. Mathematical and Computer

Modelling, 46(7-8), 174-179.

https://doi.org/10.1016/j.mcm.2006.12.013

Naser, A., & Zolkipli, M. F. (2016). A conceptual

model using elliptic curve Diffie-Hellman with an

artificial neural network over cloud computing. In

National Conference for Postgraduate Research.

Paar, C., & Pelzl, J. (1998). *Understanding

cryptography. Springer. https://doi.org/10.1007/978-3-

642-04101-3

Singh, P., & Singh, H. (2012). Cryptography in

structure adaptable digital neural networks. National

Monthly Refereed Journal of Research in Science and

Technology, 1 (12), 35-44.

Singh, A., & Aartinandal. (2020). Neural cryptography

for secret key exchange and encryption with AES.

International Journal of Advanced Research in

Computer Science and Software Engineering, 3 (5),

376-381.

https://doi.org/10.1016/j.mcm.2006.12.013
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.1007/978-3-642-04101-3

