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Abstract 

Ensuring data security is crucial in today's digital environment, where information exchange happens rapidly and 

continuously. Encryption plays a vital role in safeguarding sensitive data from unauthorized access and breaches. 

This study focuses on analyzing the encryption algorithm using hybrid elliptic curve Diffie-Hellman (ECDH) with 

Artificial Neural Networks (ANN), known as ECDH_ANN. Multiple input scenarios were evaluated, measuring 

memory complexities, operational requirements, and efficiency metrics to determine algorithm effectiveness. The 

primary challenge lies in improving encryption algorithms, particularly elliptic curves, and studying their 

complexities and performance. The ultimate goal is to measure efficiency and calculate complexities through 

evaluating various input scenarios, estimating execution time, memory usage, and optimizing encryption and 

decryption processes. This study was conducted across 50 different-sized files. The results show that as the file 

size grows, the encryption and decryption times also rise, while memory usage stays relatively constant, indicating 

efficient resource management. The algorithm maintains consistent file sizes during encryption and decryption 

processes, distinguishing it from algorithms that may inflate file sizes. The study also demonstrates that encryption 

and decryption operations exhibit linear growth rates. Overall, the ECDH_ANN algorithm stands out for its ability 

to maintain data integrity and use computational resources efficiently, making it perfectly suited for environments 

prioritizing data security and computational efficiency. The study recommends using this algorithm due to its 

quality and suggests comparing it with other algorithms for further analysis. 

Key words: Encryption, Data Security, Cryptographic Algorithms, ECDH Hybrid, Artificial Neural Networks, 

Computational Efficiency, Data Integrity. 

Introduction 

In the contemporary digital landscape, the escalating 

volume of sensitive data exchanged across networks 

underscores the paramount importance of encryption 

mechanisms in ensuring information security. 

Encryption stands as a fundamental pillar in 

safeguarding data integrity and confidentiality, 

mitigating the risks posed by unauthorized access and 

malicious intrusions. As cyber, threats continue to 

evolve in sophistication and frequency, the adoption of 

robust encryption methodologies becomes imperative 

to fortify the resilience of digital infrastructures. 

Artificial neural networks (ANNs) have emerged as a 

transformative tool in augmenting the capabilities of 

cryptographic algorithms, amplifying their efficacy 

and resilience against adversarial attacks. ANNs, 

inspired by the complex interconnected structure of the 

human brain, offer unparalleled computational power 

and adaptability, enabling innovative approaches to 

encryption and decryption processes. Through iterative 

learning and pattern recognition, ANNs empower 

cryptographic systems to enhance their ability to detect 

anomalies, resist cryptanalysis, and optimize resource 

utilization. 
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The primary objective of this research is to analyze the 

complexities and efficiency metrics inherent in 

cryptographic algorithms, with a particular focus on the 

integration of artificial neural networks within the 

Elliptic Curve Diffie-Hellman (ECDH) hybrid 

algorithm. The study seeks to ascertain the efficacy of 

the ECDH_ANN algorithm in preserving data integrity 

and computational efficiency across diverse 

operational scenarios. Additionally, the research 

endeavors to validate hypotheses regarding the 

scalability, accuracy, and resilience of the 

ECDH_ANN algorithm compared to conventional 

encryption methodologies. 

Structured into distinct sections, this paper unfolds as 

follows: First, an overview of the increasing 

significance of encryption in the digital age presented, 

contextualizing the necessity for advanced 

cryptographic techniques. Subsequently, the role of 

artificial neural networks in enhancing cryptographic 

algorithms elucidated, highlighting their 

transformative impact on encryption methodologies. 

Following this, the research objectives and hypotheses 

delineated, providing a clear roadmap for the ensuing 

analysis and evaluation. Finally, the structure of the 

paper outlined, delineating the thematic organization of 

subsequent sections and the flow of information 

therein. Through this structured approach, this paper 

endeavors to contribute nuanced insights into the realm 

of cryptographic algorithms, underscoring the pivotal 

role of artificial neural networks in fortifying data 

security in the digital age. 

Literature Review: 

This literature review examines the integration of 

Elliptic Curve Diffie-Hellman (ECDH) with artificial 

neural networks (ANNs) in cryptographic systems. The 

Diffie-Hellman key exchange (DHKE) introduced 

asymmetric encryption but lacks authentication 

mechanisms, leaving it vulnerable to man-in-the-

middle attacks. The ECDH protocol addresses these 

issues by employing elliptic curve cryptography, 

enhancing both security and efficiency. 

Artificial neural networks (ANNs) inspired by the 

human brain's structure and functioning, bring unique 

capabilities in pattern recognition, optimization, and 

learning. They have been explored in encryption and 

decryption processes to improve security and 

computational efficiency. Various methodologies 

have been employed in relevant studies to evaluate 

cryptographic algorithms. For instance, Othman 

Alesawy and Ravie Chandren Muniyandi (2016) 

conducted a study on secure data transmission over 

private clouds using ECDH combined with ANN and 

genetic algorithms, showing enhancements in time 

efficiency, performance, and accuracy (Alesawy & 

Muniyandi, 2016, p. 80). Additionally, Aws Naser et 

al. (2016) proposed a conceptual model integrating 

ECDH with ANNs for cloud computing, emphasizing 

practical applications of neural networks in 

cryptographic systems (Naser & Zolkipli, 2016). 

DUAN et al. (2020) introduced a novel image 

steganography method that integrates Image Elliptic 

Curve Cryptography (ECC) with Deep Neural 

Networks (DNN). This method prioritizes secure 

embedding, payload capacity, and human-perceivable 

image quality. It involves Discrete Cosine Transform 

(DCT) for the secret image, ECC encryption, and 

SegNet DNN to increase steganography capacity. 

Experimental results demonstrated efficient pixel 

allocation, high steganography capacity, and 

improved image quality metrics (PSNR and SSIM), 

effectively concealing data and enhancing image 

quality (Duan et al., 2020). However, existing studies 

often face challenges related to scalability, 

computational complexity, and real-world 

applicability. This review aims to address these gaps 

by evaluating the complexities and efficiency of the 

ECDH hybrid algorithm using artificial neural 

networks. It seeks to identify optimal encryption 

solutions that balance security and computational 

efficiency through comprehensive analyses of various 

input scenarios and memory complexities. 

Moreover, the study aims to provide insights into the 

scalability, accuracy, and efficiency of the ECDH 



 
Ibrahim et al., Graduate College Journal – NU   Vol.19 -2024, No. (11), 15 - 25 

51 
 

hybrid algorithm under diverse conditions, aiming to 

contribute to a deeper understanding of its performance 

in cryptographic applications. 

Methodology 

The research design and methodology employed in this 

study aim to comprehensive analyze the complexities 

and efficiency of cryptographic algorithms, 

specifically focusing on the Elliptic Curve Diffie-

Hellman (ECDH) hybrid algorithm using artificial 

neural networks (ANNs). The methodology 

encompasses data collection methods, analysis 

techniques, and criteria for measuring algorithm 

quality and performance see Fig(1). 

 

Figure (1): Methodology 

Data Collection: 

Data collection for this study involves gathering 

information on various input scenarios, memory 

complexities, operational requirements, and efficiency 

metrics related to the ECDH hybrid algorithm. Primary 

data sources include cryptographic literature, research 

papers, and technical documentation detailing 

algorithm specifications and performance metrics. 

Additionally, empirical data collected through 

simulations, experiments, or real-world 

implementations to validate algorithmic performance 

under diverse conditions. We put the texts we want to 

encrypt in text files of different sizes. Each file will be 

duplicated several times, where we will get 10 files of 

different sizes. Each file will be repeated five times 

with different texts, which means we have 50 files in 

total. We will name the files in ascending order 

according to their size, where we have very small files, 

small files, medium files, large files and very large 

files. For example, if we assume that we have a very 

small file known as "F1", we will create five other files 

of the same size but with different contents, and their 

labels become "F11", "F12", "F13", "F14", "F15". We 

will repeat this process with the rest of the files to 

obtain 50 files, where we have groups of five files of 

the same size but different contents. File sizes were 

graded and include very small files, small files, 

medium files, large files, and very large files, based on 

previous studies and their recommendations. In this 

way, we will be able to study the changes that may 

occur within files of the same size but with different 

contents, in order to understand the performance of the 

algorithms and evaluate them based on the specified 

criteria. The data is laid out and replicated in the 

following table: 

Table (1): Data Structure: 

Frequency Scale File # 

F15 F14 F13 F12 F11 Name 
F1 1 

10 10 10 10 10 Size 

F25 F24 F23 F22 F21 Name 
F2 2 

20 20 20 20 20 Size 

F35 F34 F33 F32 F31 Name 
F3 3 

30 30 30 30 30 Size 

F45 F44 F43 F42 F41 Name 
F4 4 

40 40 40 40 40 Size 

F55 F54 F53 F52 F51 Name 
F5 5 

50 50 50 50 50 Size 

F65 F64 F63 F62 F61 Name 
F6 6 

60 60 60 60 60 Size 

F75 F74 F73 F72 F71 Name 
F7 7 

70 70 70 70 70 Size 

F85 F84 F83 F82 F81 Name 
F8 8 

80 80 80 80 80 Size 

F95 F94 F93 F92 F91 Name 
F9 9 

90 90 90 90 90 Size 

F105 F104 F103 F102 F101 Name 
F10 10 

100 100 100 100 100 Size 

 

Analysis Techniques: 

The analysis of cryptographic algorithm complexities 

and efficiency entails several steps aimed at evaluating 
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algorithmic performance across different criteria. 

These steps include: 

1. Identification of Key Parameters: Define the key 

parameters relevant to the analysis, such as encryption 

and decryption times, memory sizes, file sizes, 

computational resources, and optimization results. 

2. Evaluation of Algorithm Performance: Assess the 

performance of the ECDH hybrid algorithm using 

ANNs across various input scenarios. This involves 

conducting simulations or experiments to measure 

encryption and decryption times, memory usage, and 

computational efficiency under different conditions. 

3. Comparative Analysis: Compare the performance of 

the ECDH hybrid algorithm 4. Criteria for Measuring 

Algorithm Quality: Define criteria for measuring 

algorithm quality and performance, including 

efficiency, accuracy, complexity, and scalability, 

security, and execution time. These criteria serve as 

benchmarks for evaluating the effectiveness of the 

ECDH hybrid algorithm in real-world scenarios. 

Tools and Software: 

Data analysis and visualization are essential 

components of this study, requiring specialized tools 

and software for processing and interpreting results. 

Commonly used tools include MATLAB, Python with 

libraries such as NumPy and Pandas, R, and statistical 

software packages. These tools facilitate data analysis, 

statistical modeling, visualization of results, and 

generation of insights from empirical data. 

Furthermore, visualization techniques such as charts, 

graphs, and plots are employed to present findings 

effectively and facilitate understanding. Visualization 

tools like Matplotlib, Seaborn, and Tableau utilized to 

create visual representations of algorithmic 

performance metrics, aiding in the interpretation and 

communication of results to stakeholders and 

researchers. 

Algorithm Description: 

The ECDH (Elliptic Curve Diffie-Hellman) hybrid 

algorithm represents a sophisticated cryptographic 

technique that combines the principles of elliptic curve 

cryptography with the computational power of 

artificial neural networks (ANNs). This section 

provides a detailed explanation of the ECDH hybrid 

algorithm, highlighting its integration with ANNs, 

neural network architecture, parameters, and the 

cryptographic principles underlying its operation. 

The ECDH hybrid algorithm based on the Diffie-

Hellman key exchange protocol, which enables two 

parties to securely establish a shared secret key over an 

insecure channel. However, unlike the traditional 

Diffie-Hellman protocol, which operates in a finite 

field, the ECDH hybrid algorithm leverages elliptic 

curve cryptography for enhanced security and 

efficiency. 

Integration with Artificial Neural Networks: 

In the ECDH hybrid algorithm, artificial neural 

networks employed to optimize key generation, 

encryption, and decryption processes. The neural 

network architecture consists of multiple layers, 

including an input layer, hidden layers, and an output 

layer. The input layer configured to accept input data, 

such as plaintext or cipher text, while the output layer 

produces the final encrypted or decrypted output see 

Fig(2). The hidden layers contain neurons responsible 

for processing input data and extracting meaningful 

features relevant to the encryption process. 

 

Figure (2):Hybrid Encryption,Decryption and Key 

Generation using ECDH and ANN 

Source: Prepared by Author using Drow.io 

Programme, (2024). 

The Diffie-Hellman Parameters: 

The Diffie-Hellman key exchange (DHKE), proposed 

by Whitfield Diffie and Martin Hellman in 1976, is the 
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first asymmetric cryptographic protocol published 

openly. It enables two parties, usually named Alice and 

Bob, to establish a shared secret key over an insecure 

channel. DHKE operates in a prime field (Zp), utilizing 

exponentiation, which is computationally easy to 

compute but difficult to reverse. Both parties agree on 

domain parameters, including a prime number (p) and 

a generator (α), which are publicly known. Each party 

selects a private key (a and b) and computes their 

respective public keys (A and B) by exponentiating the 

generator α to their private keys modulo p. These 

public keys are exchanged over the insecure channel. 

Using the received public key, each party computes the 

shared secret key by raising it to their private key 

modulo p (Paar & Pelzl, 1998). This shared key enables 

secure communication using symmetric encryption 

algorithms. DHKE's security relies on the 

computational difficulty of the discrete logarithm 

problem. Attackers, with access only to the public 

parameters and keys, would find it challenging to 

derive the private keys and the shared secret key. 

However, the basic DHKE version is vulnerable to 

man-in-the-middle attacks and lacks authentication. 

Additional measures like digital signatures are 

necessary for ensuring integrity and authenticity in 

practical implementations. The basic idea behind the 

DHKE is that exponentiation in 𝑍𝑝, p prime, is a one-

way function and that exponentiation is commutative, 

i.e., (Paar & Pelzl, 1998; Singh & Aartinandal, 2020) 

𝑘 =  (𝑎𝑥)𝑦 
≡  (𝑎𝑦)𝑥 

𝑚𝑜𝑑 𝑝                                 (1) 

The value 𝑘 ≡  (𝑎𝑥)𝑦  ≡  (𝑎𝑦)𝑥 𝑚𝑜𝑑 𝑝 is the joint 

secret, which can be used as the session key between 

the two parties. Let us now consider how the Diffie–

Hellman key exchanges protocol over 𝑍𝑝 works. In this 

protocol, we have two parties, Alice and Bob, who 

would like to establish a shared secret key. There is 

possibly a trusted third party that properly chooses the 

public parameters, which need for the key exchange. 

However, it is also possible that Alice or Bob generate 

the public parameters. Strictly speaking, the DHKE 

consists of two protocols, the set-up protocol and the 

main protocol, which performs the actual key 

exchange. The set-up protocol consists of the following 

steps: Diffie–Hellman Set-up : (Paar & Pelzl, 1998; 

Singh & Aartinandal, 2020) 

1. Choose a large prime p. 

2. Choose an 

integer a ∈ 

{2, 3, . . . , 

p − 2} .  

 3. Publish p 

and a. 

These two values are sometimes referred to as 

domain parameters. If Alice and Bob both know the 

public parameters p and a computed in the set-up 

phase, they can generate a joint secret key k with the 

following key-exchange  

protoco(Paar & Pelzl, 1998)l:                                 

Alice  Bob 

choose a =  kpr,A ∈ {2, . . . , p − 2}   choose b =  kpr,B ∈ {2, . . . , p − 2} 

𝐴 =  𝑘𝑝𝑢𝑏, 𝐴 ≡  𝑎𝑎 
𝑚𝑜𝑑 𝑝 compute 

 

 compute 𝐵 =  𝑘𝑝𝑢𝑏, 𝐵 ≡  𝑎𝑏 
𝑚𝑜𝑑 𝑝 

 kpub,A =A 

 

 

 kpub,B =B  

𝑘𝐴𝐵 = ≡ 𝐵𝑎𝑚𝑜𝑑𝑝𝑘𝑝𝑢𝑏,𝐵
𝑘𝑝𝑟,𝐴

  𝑘𝐴𝐵 = ≡ 𝐴𝑏𝑚𝑜𝑑𝑝𝑘𝑝𝑢𝑏,𝐴
𝑘𝑝𝑟,𝐵

 

 

Neural Network Parameters: 

The neural network parameters, including the number 

of layers, the number of neurons in each layer, and 

activation functions, carefully tuned to optimize 

algorithm performance see Fig (3). Common activation 

functions used in the ECDH hybrid algorithm include 

sigmoid, tanh, and ReLU, depending on the specific 

requirements of the encryption task. Additionally, 

training algorithms such as backpropagation and 

gradient descent employed to iteratively adjust the 

neural network weights and biases to minimize 

prediction errors. 
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Neural networks have been used in cryptography 

operations because of their many advantages. Several 

algorithms have been proposed that rely on different 

types of neural networks to carry out the process of 

encryption and decryption. Among these algorithms, 

the backward backpropagation network is cited as an 

example. In the process of encryption using neural 

network, the steps can be summarized as follows 

(Singh and Singh (2012), Singh and Aartinandal 

(2020), Chakraborty (2010), and Al-nima, Muhanad, 

and Hassan (2009): 

1. Enter the text to be encrypted. 

2. Convert text to ASCII CODE representation. 

3. Create a neural network consisting of an input layer, 

an output layer, and a hidden layer. The number of 

neurons in the input layer is equal to the size of the text 

to be encoded, the number of neurons in the hidden 

layer is specified (k), and the number of neurons in the 

output layer is equal to the size of the ciphertext. 

4. Generate weights between the input layer and the 

hidden layer, and between the hidden layer and the 

output layer. 

5. Generate thresholds for the hidden layer. 

6. Train the neural network by calculating the error 

rate, updating weights, and the spread of error across 

the network. 

7. Calculate the output layer using trained weights. 

8. Convert ASCII CODE values to the appropriate 

characters. 

9. Encode text using calculated results. 

 

 

Figure (3): Artificial Neural Networks (ANN) (] 

Singh, P., & Singh, H. (2012)) 

 

Criteria of Measuring the Complexities for 

Cryptographic Algorithms: 

The efficiency measurement criteria for different 

encryption algorithms include algorithm execution 

time, file size, space complexities, number of 

operations, time complexity, better, medium, and worst 

cases, execution cost, effort expended, optimization, 

and algorithm efficiency. These metrics help determine 

the time required to execute the algorithm, the size of 

the file after encryption, the computational complexity 

of the algorithm, the best, worst, and average state of 

the algorithm's performance, execution cost, the 

amount of effort expended, and the efficiency of the 

algorithm (Laskari et al., 2007). The execution time is 

determined by multiplying the execution time taken by 

the number of processors used, while the amount of 

effort expended is determined by determining the main 

fundamental operation of the problem and calculating 

the number of basic operations performed by the 

algorithm . The efficiency of an algorithm calculated 

by multiplying the number of processors used to 

accomplish a particular operation by the time required 

to perform that operation. (Cormen et al., 1990) 

Figure (4): An Algorithm to Measure Efficiency of 

Encryption ECDH using ANN 

The Results of Execution: 

Implementing and evaluating encryption and 

decryption algorithms is vital in information security. 

This process assesses the performance of the 

ECDH_ANN algorithm by applying it to test files and 

measuring execution time, memory consumption, and 
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complexity. Execution time depends on data volume, 

algorithm complexity, and system capacity, measured 

in seconds. Algorithm growth rate, represented by 

various functions, estimates efficiency and 

performance. Complexity analysis categorizes cases 

into best, worst, and average, studying memory usage 

and its impact on performance. File size affects 

memory usage and performance, aiding in 

optimization. Effort measures the work needed to solve 

problems with the algorithm, determining efficiency 

for files of different sizes. Optimization evaluates best, 

worst, and average cases to improve performance. The 

number of operations, including basic and iterative 

calculations, impacts software efficiency, aiming to 

reduce steps for better performance and resource use . 

Table (2): Performance Evaluation of ECDH Hybrid Algorithm with ANN in Cryptographic Systems: Encryption and 

Decryption for Repeated Files (F1 - F10) 

Submitted 

Effort(s) 

File 

size 

(byte) 

Memory 

size (byte) 

Best 

cases(s) 

Average 

cases(s) 

Worst 

cases(s) 

Time 

excute(s) 
Operation File 

0.11588 1024 303883.4 0.200457 0.21464 0.267039 0.214640 Encryption 
F1 

0.11416 1024 246678 0.209113 0.223362 0.272167 0.223362 Decryption 

0.19082 2048 550261.2 0.308056 0.324170 0.336126 0.324170 Encryption 
F2 

0.18958 2048 435836.4 0.344511 0.350241 0.361116 0.350241 Decryption 

0.27660 3072 795007.8 0.431756 0.441622 0.449097 0.441622 Encryption 
F3 

0.26626 3072 623562.8 0.468236 0.481054 0.493680 0.481054 Decryption 

0.32416 4096 1038807 0.586551 0.619980 0.674048 0.619900 Encryption 
F4 

0.57796 4096 812018.8 0.775069 0.796081 0.813936 0.796081 Decryption 

0.39270 5120 1284336 0.937621 1.036422 1.243964 1.036422 Encryption 
F5 

0.87300 5120 1000971 1.055004 1.099447 1.128025 1.099447 Decryption 

0.52178 6144 1528213 1.135472 1.167818 1.248574 1.167818 Encryption 
F6 

1.13798 6144 1189008 1.276176 1.303467 1.318073 1.303467 Decryption 

0.59318 7168 1773615 1.338915 1.366921 1.398961 1.366921 Encryption 
F7 

1.25072 7168 1377745 1.472157 1.512991 1.543327 1.512991 Decryption 

0.78158 8192 2017213 1.559754 1.598759 1.649303 1.598759 Encryption 
F8 

1.19362 8192 1565704 1.687031 1.70843 1.765692 1.708430 Decryption 

0.92804 9216 2263234 1.795187 1.813389 1.826192 1.813389 Encryption 
F9 

1.15120 9216 1753950 1.900602 1.936924 2.000418 1.936924 Decryption 

1.08728 10240 2517554 2.039848 2.100701 2.169962 2.100701 Encryption 
F10 

1.29348 10240 1951457 2.184023 2.276966 2.480676 2.276966 Decryption 

Source: Prepared by Authors MATLAB output, (2024). 

 The Discussion of the Results: 

The provided tables present a comprehensive analysis 

of various metrics, including encryption and decryption 

times, memory sizes, file sizes, effort, and optimization 

results for files F1 to F10 using the ECDH_ANN 

encryption algorithm. These metrics are crucial for 

evaluating the performance and efficiency of the 

algorithm, particularly in scenarios where data security 

and computational resources are of utmost importance. 

The table (2) clearly demonstrates a consistent trend of 

increasing encryption and decryption times as the file 

sizes grow larger. This trend expected, as larger files 

necessitate more computational resources for 

processing. Additionally, variations in encryption and 

decryption times among files of the same size indicate 

potential disparities in data complexity or structure, 

which can influence the algorithm's performance. It 

observed that both encryption and decryption times 

increase with larger file sizes. 

Furthermore, by analyzing growth rate, coefficient of 

determination (R²), and mean square error (RMSE) 

values, insights into the algorithm's scalability and 

accuracy can gained. The high R² values and low 

RMSE values for both encryption and decryption 

indicate that linear and polynomial functions are 

suitable for accurately estimating processing times, 

which can  

be represented symbolically as O(n^k) see fig(5). 
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Figure (5): Growth Rate. Source: Prepared by Authors MATLAB output, (2024). 

Regarding encryption, the best execution time recorded 

at 0.200457 seconds, the worst at 2.169962 seconds, 

and an average execution time of 1.06844208 seconds. 

Similarly, for decryption, the best execution time is 

0.209113 seconds, the worst is 2.480676 seconds, and 

the average execution time is 1.16259372 seconds see 

Fig (6). 

 

Figure (6): The Best, Average and Worst Cases of Time Execution. Source: Prepared by Authors MATLAB output, 

(2024). 

Additionally, the analysis of memory sizes reveals the 

algorithm's efficiency in utilizing memory resources. 

Despite variations in file sizes, the memory sizes 

required for encryption and decryption processes 

remain relatively stable, indicating consistent resource 

allocation regardless of the file size see Fig (7). 

Figure (7): The Memory Sizes Required for Encryption and Decryption Source: Prepared by Authors MATLAB output, 

(2024). 
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The discussion on file size preservation throughout the 

encryption and decryption processes highlights the 

algorithm's ability to maintain data integrity without 

altering the file sizes. This feature is essential for 

applications that require data preservation and integrity 

assurance. 

Furthermore, the discussion emphasizes that the 

ECDH_ANN encryption algorithm maintains a 

constant file size, which sets it apart from other 

algorithms that often result in file size increases. This 

file size constancy following encryption serves as an 

indicator of algorithm quality. The choice of encryption 

method depends on specific requirements, as some 

methods may be more space-efficient and provide 

better protection, while others can lead to larger files 

after encryption. The results indicate that the 

ECDH_ANN method requires the least effort in the 

best and average cases but the most effort in the worst 

case. In terms of decryption efficiency, the effort 

required for encryption increases as the file size grows. 

In addition, the optimization results shed light on the 

algorithm's computational complexity and potential for 

performance enhancement. While the algorithm 

achieves acceptable processing times for smaller files, 

there is room for improvement in handling larger files 

more efficiently. 

Lastly, it should be note that the encryption and 

decryption processes of the ECDH_ANN algorithm 

exhibit the same convergence. However, encryption 

typically involves more operations compared to 

decryption. Addition is the most frequently used 

operation, while division is the least frequent. 

To summarize, the tables provide a comprehensive 

analysis of various metrics, revealing insights into the 

performance, efficiency, and characteristics of the 

ECDH_ANN encryption algorithm. The findings 

highlight areas for improvement and optimization, 

especially for handling larger files more efficiently. 

The algorithm demonstrates its ability to maintain data 

integrity and effectively utilize computational 

resources. 

The execution time of the decryption operation is 

typically about half or less than that of the encryption 

operation. In many encryption algorithms like 

ECDH_ANN (Elliptic Curve Diffie-Hellman with 

Artificial Neural Networks), encryption involves more 

complex computations, such as key generation and 

performing mathematical operations on the encrypted 

data. In contrast, the decryption process generally 

requires simpler operations, such as using the private 

key to reverse these computations, making it less 

computationally intensive. This difference in 

complexity explains why decryption time is often 

significantly shorter than encryption time. 

The memory size required during the decryption 

operation is smaller than during encryption. The 

encryption process usually demands additional 

memory to store data such as public keys and 

intermediate calculations related to complex 

mathematical transformations (e.g., in neural network-

based cryptography). In decryption, only the private 

key is typically required, with fewer intermediate steps 

or additional data to be stored. As a result, decryption 

consumes less memory compared to encryption. 

The file size after the decryption operation is the same 

as the original size before encryption. The decryption 

process is designed to restore the original data from its 

encrypted form. In most encryption algorithms, 

including ECDH_ANN, the file size after decryption 

matches the size before encryption. This means that the 

encrypted data is simply a transformed version of the 

original, and when decrypted with the correct key, the 

original data is fully recovered without any loss of 

information. 

Conclusions: 

In conclusion, the complexity analysis and efficiency 

evaluation of the ECDH_ANN encryption algorithm 

demonstrate consistent trends in encryption and 

decryption times, memory usage, and file sizes as file 

sizes increase. Encryption and decryption times 

increase noticeably with larger file sizes, while 

memory usage remains stable, indicating effective 

resource management. 
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An important feature of the algorithm is its ability to 

maintain consistent file sizes during encryption and 

decryption, setting it apart from other algorithms that 

often inflate file sizes. This consistent file size 

preservation is a positive indicator of algorithm quality. 

The effort required for encryption varies across 

scenarios, with minimal effort observed in optimal and 

average cases, and maximal effort in worst-case 

scenarios. Decryption efficiency improves as file sizes 

increase. Optimization findings highlight potential 

areas for enhancing the algorithm's computational 

complexity and performance, particularly in managing 

larger files more effectively. Although processing 

times for smaller files are acceptable, there is room for 

improvement in handling larger files. It's noteworthy 

that the encryption and decryption processes of the 

ECDH_ANN algorithm converge similarly, with 

encryption involving more operations than decryption. 

Addition is the most frequently used operation, 

whereas division is the least frequent.These findings 

provide a comprehensive analysis across various 

metrics, offering insights into the performance, 

efficiency, and characteristics of the ECDH_ANN 

encryption algorithm. This understanding can guide 

further refinements and optimizations aimed at 

enhancing the algorithm's capability to manage larger 

files and optimize resource utilization. The algorithm 

demonstrates its ability to maintain data integrity and 

efficiently utilize computational resources, making it 

suitable for scenarios prioritizing both data security and 

computational efficiency. 

Recommendations and Further Studies 

Based on the analysis and findings presented in the text, 

here are some recommendations and suggestions for 

further studies: 

1. Optimization: Focus on improving encryption and 

decryption efficiency for larger files, possibly through 

parallel computing or distributed systems. 

  2. Algorithm Comparison: Compare ECDH_ANN 

with other encryption algorithms to understand 

performance, efficiency, and security trade-offs. 

3. Security Analysis: Conduct a thorough security 

assessment to identify and mitigate potential 

vulnerabilities in ECDH_ANN. 

4. Real-world Implementation: Validate 

ECDH_ANN's performance in diverse environments to 

assess practical viability. 

5. Scalability Analysis: Evaluate how ECDH_ANN 

handles increasing file sizes to determine scalability 

and resource requirements. 

6. Neural Network Impact: Investigate the influence of 

different neural network architectures and parameters 

on ECDH_ANN's efficiency. 

7. Energy Efficiency: Analyze ECDH_ANN's energy 

consumption compared to other algorithms to optimize 

its energy efficiency. 

8. Application-specific Studies: Conduct studies in 

IoT, cloud computing, and mobile applications to 

assess ECDH_ANN's performance, efficiency, and 

security suitability. Comparing it with other algorithms 

can help identify the best fit for specific use cases. 
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