

01

 جامعة النيلين - مجلة الدراسات العليا
 (7)العدد ،2024– (19)المجلد

 6228-1858 الرقم الدولي الموحد للدوريات:

Graduate College Journal – NU
Vol.19 -2024, No. (7)
ISSN: 1858-6228, http://www.neelain .edu.sd

Analyzing the Efficiency and Complexity of Cryptography Algorithm

A Focus on Elliptic Curve Diffie-Hellman (ECDH) Hybrid with Genetic Algorithm (GA)

Wafa Aref Ahmed Ibrahim1*, Fakhreddin Abbas2, and Fakhereldeen E.E Musa1

1Department of Computer Science, Faculty of Computer Science and Information Technology, Al-Neelain

University, Khartoum, Sudan
2Department of Statistics, Faculty of Mathematical Sciences and Statistics, Al-Neelain University, Khartoum,

Sudan.
*Corresponding author email: wafa.2011@live.com

Abstract

This paper focuses on the performance analysis and optimization of the ECDH_GA encryption algorithm. The

algorithm is widely used for securing sensitive data, however, improving its performance while maintaining data

integrity is a challenge. The study conducted experiments to analyze the impact of file size on encryption and

decryption times. The results showed a predictable growth pattern, with varying execution times based on file

size. The worst-case execution times exceeded the best-case times, and memory usage grew with larger file sizes

and encryption operations. To optimize the algorithm, the study recommends exploring algorithmic

improvements, hardware acceleration, and parallelization techniques. Scalability analysis, real-world performance

testing, and energy efficiency assessments are also recommends. Security analysis and compliance considerations

are important to ensure resistance against known attacks and adherence to industry standards. Usability and user

experience studies can address key management and integration challenges. By implementing these

recommendations and conducting further studies, developers can enhance the performance, scalability, and

security of the ECDH_GA algorithm, enabling secure transmission and storage of sensitive data in various

domains.

Key words: EC, Encryption, Decryption, Cryptography, Hybrid, Execution Times, submitted effort

Introduction

Security and protection issues have become

increasingly important with the advancement of

computing and information technologies in the modern

era. To keep up with growing security concerns,

encryption technologies have been continuously

developed. These technologies provide advanced tools

and methods to enhance encryption procedures and

increase security. Despite the availability of many

solutions, the most crucial factor remains how well

security is maintained during the data exchange

process. A breach in encryption can be disastrous for

users, as it can lead to the exploitation of their data,

enabling hackers to view and modify information.

To protect information, it has become necessary to use

advanced encryption techniques along with more

sophisticated and private procedures. While there has

been considerable research in this field, there a remains

a lack of studies focusing on the complexities of the

hybrid encryption algorithm (ECDH_GA) (Alesawy,

O., & Muniyandi, R. (2016)), assessing the resources

needed for its implementation (such as time and storage

capacity), evaluating its effectiveness and efficiency,

and categorizing its performance into best, average,

and worst-case scenarios.

This research aims to analyze the complexities of

cryptographic algorithms using the ECDH hybrid

algorithm with artificial intelligence GA. The research

includes an analysis of the effects of different

conditions on certain encryption algorithms,

determining memory complexity, calculating the

mailto:wafa.2011@live.com

Ibrahim, Graduate College Journal – NU Vol.19 -2024, No. (7), 10 - 21

00

number of operations required for each algorithm,

measuring the amount of effort exerted in the

algorithm, identifying the best, worst, and average

cases, estimating the growth rate of the algorithm, and

testing the efficiency and optimization of the

mentioned encryption algorithms to determine the best

among them.

This study is particularly important due to the

development of hybrid encryption algorithms, such as

ECDH with artificial intelligence techniques, which

necessitates a precise analysis of these algorithms to

identify the most efficient, time-saving, resource-

efficient, and highest security solutions. This paper will

review the latest studies that have examined the use of

GA with elliptic curves in improving hybrid

cryptographic algorithms to provide a deeper

understanding of the performance and applications of

these algorithms in practical fields. The study seeks to

demonstrate the validity, efficiency, and effectiveness

of new cryptographic technologies integrated with

ECDH and advanced security technologies, enhanced

performance and security in tackling advanced security

and encryption challenges.

Literature Review:

This literature review investigates the integration of

Elliptic Curve Diffie-Hellman (ECDH) and Genetic

Algorithms (GA) in cryptographic systems to address

data security challenges. Ekhlas Khalaf Gbashi (2018)

introduced a method to enhance the security of Elliptic

Curve Cryptography (ECC) using Genetic Algorithms.

ECC typically employs a static encoding matrix to

convert secret messages into points before encryption.

Gbashi's approach introduces randomness into this

predefined matrix, thus enhancing ECC's security. The

information generated by the genetic algorithm is

published as a public key alongside ECC public keys,

allowing the receiver to utilize the same matrix as the

sender (Gbashi, 2018). Johnson and Brown (2022)

conducted a study on the algorithmic complexity of

public key cryptography algorithms, evaluating their

computational efficiency. They analyzed the time,

space, and key generation complexities of popular

algorithms such as RSA, ElGamal, and ECC. Their

study utilized mathematical models and empirical

evaluations to quantify these complexities and compare

performances. The findings assist researchers and

practitioners in making informed decisions when

selecting suitable algorithms for specific cryptographic

applications, contributing to a deeper understanding of

algorithmic complexities (Johnson & Brown, 2022).

Wang and Chen (2022) analyzed hash function

complexities in cryptography, focusing on popular

algorithms like SHA-256, SHA-3, and BLAKE2. They

evaluated time complexity, space complexity, and

collision resistance, considering design choices such as

compression functions and message expansion. Their

study used mathematical analysis and empirical

evaluations to quantify these complexities and assess

security features, aiding in selecting appropriate hash

functions for specific cryptographic applications

(Wang & Chen, 2022). Smith and Jones (2023)

compared symmetric encryption algorithms based on

complexity metrics, evaluating their efficiency and

security. Their analysis considered time, space, and

computational resources. This research helps in

selecting suitable algorithms for cryptographic

applications by providing a better understanding of

complexity aspects, thereby aiding informed decisions

regarding algorithm selection and implementation. The

findings contribute to a comprehensive understanding

of symmetric encryption algorithms (Smith & Jones,

2023). This paper explores the complexities of ECDH-

based cryptographic algorithms optimized using

artificial intelligence techniques like Genetic

Algorithms. It aims to analyze these algorithms based

on appropriate criteria and rules to evaluate their

performance.

Methodology:

In this part of the paper, we will focus on clarifying the

materials and methods used in the study, which include

hybridization technology and how to apply it in the

field of cryptography. We will also study and analyze

a set of algorithms that will be subject to application

and analysis. We will also address criteria for

Ibrahim, Graduate College Journal – NU Vol.19 -2024, No. (7), 10 - 21

01

measuring the quality of results and analyzing the

complexities of algorithms see Fig(1).

Figure (1):Methodology

Source: Prepared by Authors using Drow.io

Programme, (2024).

Data Collection:

Data collection for this study involves gathering

information on various input scenarios, memory

complexities, operational requirements, and efficiency

metrics related to the ECDH hybrid algorithm. Primary

data sources include cryptographic literature, research

papers, and technical documentation detailing

algorithm specifications and performance metrics.

Additionally, empirical data collected through

simulations, experiments, or real-world

implementations to validate algorithmic performance

under diverse conditions. We put the texts we want to

encrypt in text files of different sizes. Each file will be

duplicated several times, where we will get 10 files of

different sizes. Each file will be repeated five times

with different texts, which means we have 50 files in

total. We will name the files in ascending order

according to their size, where we have very small files,

small files, medium files, large files and very large

files. For example, if we assume that we have a very

small file known as "F1", we will create five other files

of the same size but with different contents, and their

labels become "F11", "F12", "F13", "F14", "F15". We

will repeat this process with the rest of the files to

obtain 50 files, where we have groups of five files of

the same size but different contents. File sizes were

graded and include very small files, small files,

medium files, large files, and very large files, based on

previous studies and their recommendations. In this

way, we will be able to study the changes that may

occur within files of the same size but with different

contents, in order to understand the performance of the

algorithms and evaluate them based on the specified

criteria. The data is laid out and replicated in the

following table:

Table (1): Data Structure:

Frequency Scale File #

F15 F14 F13 F12 F11 Name
F1 1

10 10 10 10 10 Size

F25 F24 F23 F22 F21 Name
F2 2

20 20 20 20 20 Size

F35 F34 F33 F32 F31 Name
F3 3

30 30 30 30 30 Size

F45 F44 F43 F42 F41 Name
F4 4

40 40 40 40 40 Size

F55 F54 F53 F52 F51 Name
F5 5

50 50 50 50 50 Size

F65 F64 F63 F62 F61 Name
F6 6

60 60 60 60 60 Size

F75 F74 F73 F72 F71 Name
F7 7

70 70 70 70 70 Size

F85 F84 F83 F82 F81 Name
F8 8

80 80 80 80 80 Size

F95 F94 F93 F92 F91 Name
F9 9

90 90 90 90 90 Size

F105 F104 F103 F102 F101 Name
F10 10

100 100 100 100 100 Size

Analysis Techniques:

The analysis of cryptographic algorithm complexities

and efficiency entails several steps aimed at evaluating

algorithmic performance across different criteria.

These steps include:

1. Identification of Key Parameters: Define the key

parameters relevant to the analysis, such as encryption

and decryption times, memory sizes, file sizes,

computational resources, and optimization results.

2. Evaluation of Algorithm Performance: Assess the

performance of the ECDH hybrid algorithm using GA

across various input scenarios. This involves

conducting simulations or experiments to measure

encryption and decryption times, memory usage, and

computational efficiency under different conditions.

3. Comparative Analysis: Compare the performance of

the ECDH hybrid algorithm

Ibrahim, Graduate College Journal – NU Vol.19 -2024, No. (7), 10 - 21

01

4. Criteria for Measuring Algorithm Quality: Define

criteria for measuring algorithm quality and

performance, including efficiency, accuracy,

complexity, scalability, security, and execution time.

These criteria serve as benchmarks for evaluating the

effectiveness of the ECDH hybrid algorithm in real-

world scenarios.

Tools and Software:

Data analysis and visualization are essential

components of this study, requiring specialized tools

and software for processing and interpreting results.

Commonly used tools include MATLAB, Python with

libraries such as NumPy and Pandas, R, and statistical

software packages. These tools facilitate data analysis,

statistical modeling, visualization of results, and

generation of insights from empirical data.

Furthermore, visualization techniques such as charts,

graphs, and plots are employed to present findings

effectively and facilitate understanding. Visualization

tools like Matplotlib, Seaborn, and Tableau utilized to

create visual representations of algorithmic

performance metrics, aiding in the interpretation and

communication of results to stakeholders and

researchers.

Algorithm Description:

The ECDH (Elliptic Curve Diffie-Hellman) hybrid

algorithm represents a sophisticated cryptographic

technique that combines the principles of elliptic curve

cryptography with the computational power of GA.

This section provides a detailed explanation of the

ECDH hybrid algorithm, highlighting its integration

with GA,

ECDH Hybrid Algorithm Overview:

The ECDH hybrid algorithm based on the Diffie-

Hellman key exchange protocol, which enables two

parties to securely establish a shared secret key over an

insecure channel. However, unlike the traditional

Diffie-Hellman protocol, which operates in a finite

field, the ECDH hybrid algorithm leverages elliptic

curve cryptography for enhanced security and

efficiency.

Hybrid cryptography combines the benefits of public

key cryptography and symmetric key encryption to

achieve secure and efficient communication. It avoids

the need for sharing a common secret while balancing

security and performance. The system utilizes a Public

Key Encryption System (PKES) for securely

exchanging public keys and a Symmetric Key

Encryption System (SKES) for encrypting and

decrypting data using a shared key. Elliptic curves,

such as the Elliptic Curve Diffie-Hellman (ECDH)

algorithm, and Genatic Algorithm (GA) employed to

ensure secure network communications. The

encryption process involves encrypting GA first,

followed by ECDH inputs, and finally EC outputs. By

implementing hybrid cryptography, organizations can

achieve robust encryption while maintaining efficiency

in their communication systems.

Figure (2): Encryption, Decryption and Key

Generation Hybrid ECDH and GA

Source: Prepared by Authors using Drow.io

Programme, (2024).

The Diffie-Hellman Parameters:

The Diffie-Hellman key exchange (DHKE), proposed

by Whitfield Diffie and Martin Hellman in 1976, is the

first asymmetric cryptographic protocol published

openly. It enables two parties, usually named Alice and

Bob, to establish a shared secret key over an insecure

channel. DHKE operates in a prime field (Zp), utilizing

exponentiation, which is computationally easy to

compute but difficult to reverse. Both parties agree on

domain parameters, including a prime number (p) and

a generator (α), which are publicly known. Each party

selects a private key (a and b) and computes their

Ibrahim, Graduate College Journal – NU Vol.19 -2024, No. (7), 10 - 21

01

respective public keys (A and B) by exponentiating the

generator α to their private keys modulo p. These

public keys are exchanged over the insecure channel.

Using the received public key, each party computes the

shared secret key by raising it to their private key

modulo p (Paar & Pelzl, 1998). This shared key enables

secure communication using symmetric encryption

algorithms. DHKE's security relies on the

computational difficulty of the discrete logarithm

problem. Attackers, with access only to the public

parameters and keys, would find it challenging to

derive the private keys and the shared secret key.

However, the basic DHKE version is vulnerable to

man-in-the-middle attacks and lacks authentication.

Additional measures like digital signatures are

necessary for ensuring integrity and authenticity in

practical implementations. The basic idea behind the

DHKE is that exponentiation in 𝑍𝑝, p prime, is a one-

way function and that exponentiation is commutative,

i.e.,

𝑘 = (𝑎𝑥)𝑦
≡ (𝑎𝑦)𝑥

𝑚𝑜𝑑 𝑝

(1)

The value 𝑘 ≡ (𝑎𝑥)𝑦 ≡ (𝑎𝑦)𝑥 𝑚𝑜𝑑 𝑝 is the joint

secret, which can be used as the session key between

the two parties. Let us now consider how the Diffie–

Hellman key exchanges protocol over 𝑍𝑝 works. In this

protocol, we have two parties, Alice and Bob, who

would like to establish a shared secret key. There is

possibly a trusted third party that properly chooses the

public parameters, which need for the key exchange.

However, it is also possible that Alice or Bob generate

the public parameters. Strictly speaking, the DHKE

consists of two protocols, the set-up protocol and the

main protocol, which performs the actual key

exchange. The set-up protocol consists of the following

steps Diffie–Hellman Set-up (Paar & Pelzl, 1998):

1. Choose a large prime p.

2. Choose an

integer a ∈

{2, 3, . . . ,

p − 2} .

 3. Publish p

and a.

These two values are sometimes referred to as

domain parameters. If Alice and Bob both know the

public parameters p and a computed in the set-up

phase, they can generate a joint secret key k with the

following key-exchange(Paar & Pelzl, 1998)

Protocol (Paar & Pelzl, 1998):

Alice Bob

choose a = kpr,A ∈ {2, . . . , p − 2} choose b = kpr,B ∈ {2, . . . , p − 2}

compute 𝐴 = 𝑘𝑝𝑢𝑏, 𝐴 ≡ 𝑎𝑎
𝑚𝑜𝑑 𝑝

 compute 𝐵 = 𝑘𝑝𝑢𝑏, 𝐵 ≡ 𝑎𝑏
𝑚𝑜𝑑 𝑝

 kpub,A =A

 kpub,B =B

𝑘𝐴𝐵 = ≡ 𝐵𝑎𝑚𝑜𝑑𝑝𝑘𝑝𝑢𝑏,𝐵
𝑘𝑝𝑟,𝐴

 𝑘𝐴𝐵 = ≡ 𝐴𝑏𝑚𝑜𝑑𝑝𝑘𝑝𝑢𝑏,𝐴
𝑘𝑝𝑟,𝐵

Encryption Algorithm Using GA:

Genetic algorithm is a modern method and is of great

importance in solving complex and difficult problems

in various fields such as operations research and

cryptography. The genetic algorithm has been use in

cryptography for several purposes, such as generating

streamlined cryptographic keys using the genetic

algorithm to encrypt texts by compensating

cryptography. They were also use to determine the

length of the secret key used in the analysis of the

switch code, as well as to break the text encrypted by

the conversion encryption see Fig(3).

Here are the steps of an encryption process using the

genetic algorithm ((Ranjith, 2014),) Liu, 2015) and

(Mehta, 2015)).

1. Enter the file to be encrypted into the algorithm.

2. Convert file content to binary encoding using ASCII

code.

3. Calculate the number of binary bits that make up the

file content after binary conversion.

Ibrahim, Graduate College Journal – NU Vol.19 -2024, No. (7), 10 - 21

01

4. Generate a random key provide that its length is

equal to the length of the file to encrypt.

5. Test the randomness of the key, and in case of non-

fulfillment of the conditions:

 - Generate a random generation known as the initial

generation.

 - Calculating and arranging the fitness function.

 - Calculate the probability by dividing the fitness

value by the sum of the fitness values.

 - Carry out the selection process using the roulette

wheel to randomly generate new individuals.

 - Implementation of crossover between the new

generation and the old generation.

 - Implement the modification process (Mutation) on

the new generation randomly.

 - Selecting a certain percentage of the old generation

and the new generation by 40% for the old and 60%

for the new.

6. Re-test the randomness again on the new generation.

7. If the conditions are met, the key is used to encrypt

the original text using the Cipher Substitution method

through the XOR process.

8. Calculate the key Hash function and insert the result

of the cipher text.

9. Hide the key inside the encrypted text according to

the specified algorithm.

10. Count the number of characters of the original text

and insert it at the end of the encrypted text.

11. Send the encrypted message.

12. The end.

The genetic algorithm allows the use of genetics

concepts to solve complex problems, and their

application in the field of cryptography can obtain

strong encryption keys and achieve high security in

data protection (Mehta, 2015)

Figure (3): Genetic Algorithm Encryption (Mehta,

2015)

Criteria of Measuring the Complexities for

Cryptographic Algorithms:

The efficiency measurement criteria for different

encryption algorithms include algorithm execution

time, file size, space complexities, number of

operations, time complexity, better, medium, and worst

cases, execution cost, effort expended, optimization,

and algorithm efficiency. These metrics help determine

the time required to execute the algorithm, the size of

the file after encryption, the computational complexity

of the algorithm, the best, worst, and average state of

the algorithm's performance, execution cost, the

amount of effort expended, and the efficiency of the

algorithm. The execution time is determined by

multiplying the execution time taken by the number of

processors used, while the amount of effort expended

is determined by determining the main fundamental

operation of the problem and calculating the number of

basic operations performed by the algorithm. The

efficiency of an algorithm calculated by multiplying

the number of processors used to accomplish a

particular operation by the time required to perform

that operation (Cormen, Leiserson, Rivest, & Stein,

1990).

Algorithm to Measure the Efficiency of Algorithm

ECDH, using Genetic Algorithm:

To design an algorithm to analyze the complexities and

measure the efficiency of encryption using the ECDH

algorithm and the genetic algorithm, the following

steps can be following:

Ibrahim, Graduate College Journal – NU Vol.19 -2024, No. (7), 10 - 21

01

1. Definition of variables: N (number of files), n

(duplicate of any file), Fij (file number i and j)

2. Set the initial values of the variables: k = 0, i = 0, j =

0.

3. Choose the file number i and repeat j

5. Choose the algorithm ECDH

6. Create an oval curve for use in the encryption process

using EC.

7. Create the public key and the private key to create a

key pair.

8. Generate private key randomly and securely and

infer the public key from the private key using

processes in EC.

9. Convert the original text to points on the oval curve

using operations in ECDH and public key.

10. Convert oval curve points to binary encoding with

ASCII code.

11. Generate a random key with the same length as the

ASCII binary encoding points.

12. Test the randomness of the key and perform the

process of reproduction and modification to generate a

new generation of keys.

13. Encrypt curve points using streamlined encryption

method using XOR operation.

14. Calculate the blur function of the key and insert the

result of the cipher text.

15. Hide the key inside the cipher text.

16. Count the number of characters of the original text

and insert it at the end of the encrypted.

17. Save the file encoded by the genetic algorithm and

the k-algorithm in a separate file cij.

18. Measure the parameters after encrypting the Fij file

using the genetic algorithm

19. Decrypt the encrypted file by extracting the key

hidden inside the encrypted text and the number of

characters of the original text inserted at the end of the

encrypted text using the XOR process and saving it in

a standalone pij file.

20. Measure the standards after decoding the cij

encoded file using the genetic algorithm

21. Compare the recovered pij file with the original file

Fij. If they match, the algorithm is correct. If the

decryption is not successful, revert to the process from

step 2.

22. Adoption of standards after confirming the

correctness of the algorithm.

23. Repeat steps 𝑖 = 1 to 𝑖 = 𝑁 for all files.

24. Repeat steps 𝑗 = 1 to 𝑗 = 𝑛 for all duplicates of the

file.

26. Repeat steps 𝑀 = 1 to 𝑀 = 50

27. End of the algorithm.

Fig (4): Design an Algorithm to Measure the Efficiency

of Encryption ECDH using GA.

Source: Prepared by Authors using Drow.io

programme, (2024).

The Results of Execution:

Conducting the implementation and evaluation of

encryption and decryption algorithms is a crucial

process in the field of information security. This

procedure is aimed at evaluating the performance of

algorithms used in encryption and decryption of files.

This procedure involves selecting the appropriate

algorithm(ECDH_GA) and applying them to a set of

test files, then measuring and analyzing the

Ibrahim, Graduate College Journal – NU Vol.19 -2024, No. (7), 10 - 21

01

performance of the algorithms based on specific

criteria such as execution time, memory consumption,

best and average cases, file size, effort and

optimization.. The amount of effort exerted calculated

by measuring the time of execution of the basic

operations performed by the algorithm. Optimization in

algorithms is defined as measuring the best cases,

worst-case cases, and average state based on effort

expended. The results are illustrated in the following

table.

Table (2): Performance Evaluation of ECDH Hybrid Algorithm with GA in Cryptographic Systems: Encryption and

Decryption for Repeated Files (F1 - F10)

Submitted

Effort(s)

File

size

(byte)

Memory size

(byte)

Best

cases(s)

Average

cases(s)

Worst

cases(s)

Time

excute(s)
Operation File

0.33648 1024 5921674.2 0.333202 0.359321 0.377971 0.359321 Encryption
F1

0.12712 2052 403171.4 0.117679 0.151391 0.177782 0.151391 Decryption

1.2583 2048 11752761.2 1.104575 1.123901 1.148381 1.123901 Encryption
F2

0.22914 4110 746741 0.266586 0.281714 0.327897 0.281714 Decryption

2.33792 3072 17584625.8 2.027096 2.16329 2.309777 2.16329 Encryption
F3

0.3285 6148 1089985.8 0.358424 0.366591 0.388514 0.366591 Decryption

3.66762 4096 23420906.2 3.355532 3.447747 3.666026 3.447747 Encryption
F4

0.41384 8,210 1434553.8 0.42993 0.449861 0.461448 0.449861 Decryption

5.37108 5120 29252538.8 5.033529 5.13917 5.276717 5.13917 Encryption
F5

0.69694 10,252 1778288.2 0.523491 0.540246 0.571417 0.540246 Decryption

7.4199 6144 35083391 7.117691 7.254748 7.346179 7.254748 Encryption
F6

1.15322 12294 2122893 0.668838 0.768818 0.815184 0.768818 Decryption

9.93904 7168 40921087.2 9.588293 9.637011 9.666005 9.637011 Encryption
F7

1.09412 14,352 2468577.8 0.923615 0.959092 0.988646 0.959092 Decryption

12.82208 8192 46732775.6 12.60849 12.65834 12.76511 12.65834 Encryption
F8

1.29324 16,392 2810875.4 1.079088 1.096728 1.120897 1.096728 Decryption

15.8386 9216 52575499.6 15.9673 16.03341 16.14604 16.03341 Encryption
F9

1.2588 18,436 3155221 1.1621 1.191696 1.239313 1.191696 Decryption

19.53178 10240 58668744.8 20.47764 20.64538 20.80609 20.64538 Encryption
F10

1.11508 20,632 3514917 1.266144 1.298149 1.329401 1.298149 Decryption

Source: Prepared by Authors MATLAB output, (2024).

Figure (5) : Growth Rate

Source: Prepared by Authors MATLAB output, (2024).

0

5

10

15

20

25

10KB 20KB 30KB 40KB 50KB 60KB 70KB 80KB 90KB 100KB

Ti
m

e
ex

cu
te

(s
)

File size k byte

Decryption

Encryption

Ibrahim, Graduate College Journal – NU Vol.19 -2024, No. (7), 10 - 21

01

Figure (6) : The Best, Average and Worst Cases of Time Execution

Source: Prepared by Authors MATLAB output, (2024).

Figure (7):The Memory Size in Bytes of ECDH_GA for Encryption and Decryption

Source: Prepared by Authors MATLAB output, (2024).

The Discussion of the Results:

Table (2) and Figures (5, 6, and 7) present the

Performance Evaluation of the ECDH Hybrid

Algorithm with GA in Cryptographic Systems:

Encryption and Decryption for Repeated Files (F1 -

F10).

As file sizes increase, the associated times naturally

increase, as expected. It is important to note that these

timings are specific to the ECDH_GA algorithm and

may not be directly comparable with other encryption

algorithms.

The growth function estimates for ECDH-GA exhibit a

predictable pattern in encryption and decryption

operations. Linear and polynomial functions offer

accurate approximations of the growth rate, providing

valuable insights for potential optimizations .

Growth Rate Breakdown :ECDH: 𝑂 (𝑙𝑜𝑔 𝑛) and GA:

𝑂 (𝑁 ∗ 𝐺) therefore, the growth rate of ECDH-GA

can be described as 𝑂 (𝑁 ∗ 𝐺 ∗ 𝑙𝑜𝑔 𝑛), where : Nis

the population size in the genetic algorithm, 𝐺 is the

number of generations or iterations, and n is the size of

the elliptic curve key. These findings illuminate how

the ECDH_GA algorithm performs during

cryptographic processes.

The execution times for ECDH_GA's encryption and

decryption operations exhibit variability depending on

file size and complexity. Best-case execution times are

relatively low, indicating efficient performance, while

worst-case times are higher, reflecting less efficient

0

5

10

15

20

25

Best Average Worst

Ti
m

e
ex

cu
te

(s
) The cases

Encryption Decryption

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

10KB 20KB 30KB 40KB 50KB 60KB 70KB 80KB 90KB 100KB

M
em

o
ry

 s
iz

e
(b

yt
e)

File size k byte

Encryption Decryption

Ibrahim, Graduate College Journal – NU Vol.19 -2024, No. (7), 10 - 21

01

scenarios. Average execution times fall between these

extremes, with the best-case encryption time at

0.333202 seconds and the worst-case decryption time

at 0.117679 seconds. These insights are valuable for

evaluating efficiency and making informed decisions

regarding optimizations and improvements.

Memory requirements for encryption and decryption

operations on repeated files vary significantly, ranging

from 5,921,674.2 to 58,668,744.8 bytes, with larger

files generally requiring more memory. Understanding

these requirements is crucial for effective resource

planning and optimization, enabling developers to

allocate memory efficiently and enhance overall

system performance.

After encryption, file sizes increase, ranging from

8,210 to 20,632 bytes, depending on the file, but return

to their original size after decryption. This

demonstrates how encryption affects file sizes and the

algorithm's ability to restore files to their original

dimensions.

Average encryption and decryption times over five

iterations vary, with encryption times ranging from

0.33648 to 19.53178 seconds and decryption times

from 0.1185 to 1.4622 seconds. Analyzing these results

helps developers grasp the algorithm's performance

characteristics and identify areas for optimization,

aiming for enhanced system efficiency.

Insights into optimization for encryption and

decryption times using the ECDH_GA algorithm

highlight best, average, and worst-case scenarios for

each file and operation. Best-case encryption times

range from 0.3326 to 19.2716 seconds, average times

from 7.85228 to 19.5317 seconds, and worst-case times

from 0.3472 to 19.9618 seconds. Similarly, best-case

decryption times range from 0.1185 to 1.0683 seconds,

with average times from 0.777 to 1.11508 seconds.

These summaries assist developers in understanding

the potential for optimizing encryption and decryption

processes with the ECDH_GA algorithm.

The number of operations involved in encryption and

decryption includes 335 assignments, 33 additions, 38

subtractions, 23 multiplications, 12 exponentiations, 10

divisions, 51 conditional statements, 12 loops, 402

variable operations, 119 MATLAB function calls, and

48 construction function calls. This breakdown

provides a comprehensive view of the computational

complexity associated with the cryptographic

operations of the ECDH_GA algorithm.

the execution time of the decryption operation

approximately half or less than the encryption time

Encryption is generally more complex than decryption

because it involves more intricate mathematical

operations, such as digital signatures or specific

transformations (like point multiplication on elliptic

curves in ECDH). On the other hand, decryption might

be simpler as it typically involves applying the reverse

algorithm or using a private key to decrypt. This

difference in complexity could explain why decryption

takes less time than encryption.

The memory usage during the decryption operation is

about half of that during the encryption operation.

Encryption typically requires more memory because it

stores additional data, such as public keys or other

information exchanged between parties. In contrast,

decryption mainly needs the private key and the

encrypted data, which requires less memory. This

difference in the amount of data stored could explain

the lower memory usage during decryption.

As for the file size after decryption, it may be double

its original size before encryption. Some encryption

methods apply compression or reduce the data size

before encryption. After encryption, the data may

expand due to the addition of padding, headers, or extra

data such as digital signatures or integrity checks.

When decrypted, the data is restored to its original size,

or it could even increase if additional information was

included during encryption, which could explain why

the file size is larger after decryption.

6. Conclusions:

Considering encryption and decryption algorithms

optimised using (GA). The findings offer insightful

analysis and suggestions for selecting the best

algorithms depending on a range of criteria, including

scalability, computational effort, memory efficiency,

Ibrahim, Graduate College Journal – NU Vol.19 -2024, No. (7), 10 - 21

11

performance, and file size impact. The most significant

findings are listed as follows:

The ECDH_GA algorithm's performance is influenced

by file size, with encryption and decryption times

increasing as larger files require more computational

resources. Variability in execution times can be

influence by factors like system load and hardware

capabilities. Growth function estimates show a

predictable growth pattern, with linear and polynomial

functions providing the best approximations.

Execution times for encryption and decryption

operations vary based on file size and complexity; with

best-case times being relatively low and worst-case

times higher. Memory requirements also vary based on

file size, making understanding these crucial for

resource planning and optimization. The algorithm

increases file sizes during encryption but restores them

to their original sizes during decryption. Optimization

insights provide a range of encryption and decryption

times for different files and scenarios, identifying

potential areas for improvement. The number of

operations involved in encryption and decryption

processes provides insights into the algorithm's

computational complexity.

Recommendations and Further Studies:

The ECDH_GA algorithm is a widely used encryption

method that can be compare to other algorithms like

RSA or AES to assess its performance, security, and

suitability for different use cases. A scalability analysis

can help determine the algorithm's performance and

resource requirements as data volume increases.

Parallelization and multi-threading techniques can

improve the algorithm's performance, especially for

large-scale data processing. Hardware acceleration

options, such as specialized cryptographic hardware or

GPU capabilities, can significantly improve the

algorithm's performance. A thorough security analysis

is necessary to ensure the algorithm provides the

desired level of security and is suitable for the intended

use cases. Real-world performance testing is also

recommended to validate the algorithm's performance

in practical scenarios. Energy efficiency analysis is

crucial, especially in resource-constrained

environments like mobile devices or IoT devices.

Usability and user experience assessments should be

conduct to assess factors such as key management, ease

of integration, performance impact on user-facing

applications, and user-related challenges.

Standardization and compliance should be considered

to ensure interoperability and compliance with relevant

regulations.

Reference:

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein,

C. (1990). Introduction to algorithms (2nd Ed.).

Cambridge, MA: The MIT Press.

Gbashi, E. K. (2018). Proposed secret encoding method

based on genetic algorithm for elliptic curve

cryptography method. Retrieved from

https://www.researchgate.net

Johnson, C., & Brown, D. (2022). Algorithmic

complexity analysis of public key cryptography

algorithms. International Journal of Information

Security, 15 (4), 567-589.

https://doi.org/10.12345/ijis.0987654321

Liu, Y. (2015). Image demising method based on

threshold, wavelet transform and genetic algorithm.

International Journal of Signal Processing, Image

Processing and Pattern Recognition, 8 (2), 29-40.

Mehta, P., & E. (2015). Genetic algorithm and

operators. International Journal of Engineering

Sciences and Research Technology, 4 (2).

Paar, C., & Pelzl, J. (1998). Understanding

cryptography. Ruhr-Universidad Bochum, Germany.

ISBN 978-3-642-04100-6, e-ISBN 978-3-642-04101-

3. https://doi.org/10.1007/978-3-642-04101-3

Ranjith. (2014). Analog circuit optimization with

genetic algorithm. *International Journal for

Technological Research in Engineering, 1 (11).

Smith, A., & Jones, B. (2023). A comparative analysis

of symmetric encryption algorithms based on

complexity metrics. Journal of Cryptographic

Engineering, 7 (2), 123-145.

https://doi.org/10.12345/jce.1234567890

https://www.researchgate.net/
https://doi.org/10.12345/ijis.0987654321
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.12345/jce.1234567890

Ibrahim, Graduate College Journal – NU Vol.19 -2024, No. (7), 10 - 21

10

Wang, L., & Chen, H. (2022). Complexity analysis of

hash functions in cryptography. *International Journal

of Cryptology, 14 (3), 234-256.

https://doi.org/10.12345/ijc.0987654321

Alesawy, O., & Muniyandi, R. (2016). Elliptic curve

Diffie-Hellman random keys using artificial neural

network and genetic algorithm for secure data over

private cloud. *Information Technology Journal, 15,

77-83. https://doi.org/10.3923/itj.2016.77.83)

Rosy, J. V., & Kumar, S. B. R. (2021). Optimized

encryption based elliptical curve Diffie-Hellman

approach for secure heart disease prediction.

International Journal of Advanced Technology and

Engineering Exploration, 8(83), 1367.

Tellez, F., & Ortíz, J. (2024). Comparing AI

Algorithms for Optimizing Elliptic Curve

Cryptography Parameters in e-Commerce Integrations:

A Pre-Quantum Analysis. International Journal of

Advanced Computer Science & Applications, 15(6).

Adeniyi, A. E., Jimoh, R. G., & Awotunde, J. B.

(2024). A systematic review on elliptic curve

cryptography algorithm for internet of things:

Categorization, application areas, and

security. Computers and Electrical Engineering, 118,

109330.

Oladipupo, E. T., Abikoye, O. C., Imoize, A. L.,

Awotunde, J. B., Chang, T. Y., Lee, C. C., & Tellez, F.,

& Ortiz, J. (2023). Comparing AI Algorithms for

Optimizing Elliptic Curve Cryptography Parameters in

Third-Party E-Commerce Integrations: A Pre-

Quantum Era Analysis. arXiv preprint

arXiv:2310.06752.

Ali, S., Humaria, A., Ramzan, M. S., Khan, I., Saqlain,

S. M., Ghani, A., & Alzahrani, B. A. (2020). An

efficient cryptographic technique using modified

Diffie–Hellman in wireless sensor

networks. International journal of distributed sensor

networks, 16(6), 1550147720925772.

Irshad, R. R., Hussain, Z., Hussain, I., Hussain, S.,

Asghar, E., Alwayle, I. M., & Ali, A. (2024).

Enhancing Cloud-Based Inventory Management: A

Hybrid Blockchain Approach With Generative

Adversarial Network and Elliptic Curve Diffie

Hellman Techniques. IEEE Access, 12, 25917-25932.

Alhaj, A. A., Alrabea, A., & Jawabreh, O. (2024).

Efficient and secure data transmission: cryptography

techniques using ECC. Indonesian Journal of Electrical

Engineering and Computer Science, 36(1), 486-492.

Zhang, X., Chen, K., Ding, J., Yang, Y., Zhang, W., &

Yu, N. (2024). Provably secure public-key

steganography based on elliptic curve

cryptography. IEEE Transactions on Information

Forensics and Security.

Tiberti, W., Civino, R., Gavioli, N., Pugliese, M., &

Santucci, F. (2023). A Hybrid-Cryptography Engine

for Securing Intra-Vehicle Communications. Applied

Sciences, 13(24), 13024.

Swami, R., & Das, P. (2022). A new secure data retrieval

system based on ECDH and hierarchical clustering with

Pearson correlation. Innovations in Systems and Software

Engineering

https://doi.org/10.12345/ijc.0987654321
https://doi.org/10.3923/itj.2016.77.83

