Graduate College Journal — NU Onhad! daals - Ldall alewlyud! alxs

Vol.19 -2024, No. (7) ﬁ (7) suadl 2024— (19) slxl!

ISSN: 1858-6228, http://www.neelain .edu.sd \\‘;:/ 1858-6228 b youll ugdl Joull 08,0

Analyzing the Efficiency and Complexity of Cryptography Algorithm
A Focus on Elliptic Curve Diffie-Hellman (ECDH) Hybrid with Genetic Algorithm (GA)

Wafa Aref Ahmed Ibrahim®*, Fakhreddin Abbas?, and Fakhereldeen E.E Musa!

!Department of Computer Science, Faculty of Computer Science and Information Technology, Al-Neelain
University, Khartoum, Sudan

2Department of Statistics, Faculty of Mathematical Sciences and Statistics, Al-Neelain University, Khartoum,
Sudan.

*Corresponding author email’ wafa.2011@live.com

Abstract

This paper focuses on the performance analysis and optimization of the ECDH_GA encryption algorithm. The
algorithm is widely used for securing sensitive data, however, improving its performance while maintaining data
integrity is a challenge. The study conducted experiments to analyze the impact of file size on encryption and
decryption times. The results showed a predictable growth pattern, with varying execution times based on file
size. The worst-case execution times exceeded the best-case times, and memory usage grew with larger file sizes
and encryption operations. To optimize the algorithm, the study recommends exploring algorithmic
improvements, hardware acceleration, and parallelization techniques. Scalability analysis, real-world performance
testing, and energy efficiency assessments are also recommends. Security analysis and compliance considerations
are important to ensure resistance against known attacks and adherence to industry standards. Usability and user
experience studies can address key management and integration challenges. By implementing these
recommendations and conducting further studies, developers can enhance the performance, scalability, and
security of the ECDH_GA algorithm, enabling secure transmission and storage of sensitive data in various
domains.

Key words: EC, Encryption, Decryption, Cryptography, Hybrid, Execution Times, submitted effort

Introduction

Security and protection issues have become sophisticated and private procedures. While there has
increasingly important with the advancement of been considerable research in this field, there a remains
computing and information technologies in the modern a lack of studies focusing on the complexities of the
era. To keep up with growing security concerns, hybrid encryption algorithm (ECDH_GA) (Alesawy,
encryption technologies have been continuously 0., & Muniyandi, R. (2016)), assessing the resources
developed. These technologies provide advanced tools needed for its implementation (such as time and storage
and methods to enhance encryption procedures and capacity), evaluating its effectiveness and efficiency,
increase security. Despite the availability of many and categorizing its performance into best, average,
solutions, the most crucial factor remains how well and worst-case scenarios.

security is maintained during the data exchange This research aims to analyze the complexities of
process. A breach in encryption can be disastrous for cryptographic algorithms using the ECDH hybrid
users, as it can lead to the exploitation of their data, algorithm with artificial intelligence GA. The research
enabling hackers to view and modify information. includes an analysis of the effects of different
To protect information, it has become necessary to use conditions on certain encryption algorithms,
advanced encryption techniques along with more determining memory complexity, calculating the

10

mailto:wafa.2011@live.com

Ibrahim, Graduate College Journal — NU Vol.19 -2024, No. (7), 10 - 21

number of operations required for each algorithm,
measuring the amount of effort exerted in the
algorithm, identifying the best, worst, and average
cases, estimating the growth rate of the algorithm, and
testing the efficiency and optimization of the
mentioned encryption algorithms to determine the best
among them.

This study is particularly important due to the
development of hybrid encryption algorithms, such as
ECDH with artificial intelligence techniques, which
necessitates a precise analysis of these algorithms to
identify the most efficient, time-saving, resource-
efficient, and highest security solutions. This paper will
review the latest studies that have examined the use of
GA with elliptic curves in improving hybrid
cryptographic algorithms to provide a deeper
understanding of the performance and applications of
these algorithms in practical fields. The study seeks to
demonstrate the validity, efficiency, and effectiveness
of new cryptographic technologies integrated with
ECDH and advanced security technologies, enhanced
performance and security in tackling advanced security
and encryption challenges.

Literature Review:

This literature review investigates the integration of
Elliptic Curve Diffie-Hellman (ECDH) and Genetic
Algorithms (GA) in cryptographic systems to address
data security challenges. Ekhlas Khalaf Gbashi (2018)
introduced a method to enhance the security of Elliptic
Curve Cryptography (ECC) using Genetic Algorithms.
ECC typically employs a static encoding matrix to
convert secret messages into points before encryption.
Gbashi's approach introduces randomness into this
predefined matrix, thus enhancing ECC's security. The
information generated by the genetic algorithm is
published as a public key alongside ECC public keys,
allowing the receiver to utilize the same matrix as the
sender (Gbashi, 2018). Johnson and Brown (2022)
conducted a study on the algorithmic complexity of
public key cryptography algorithms, evaluating their
computational efficiency. They analyzed the time,

space, and key generation complexities of popular

11

algorithms such as RSA, ElGamal, and ECC. Their
study utilized mathematical models and empirical
evaluations to quantify these complexities and compare
performances. The findings assist researchers and
practitioners in making informed decisions when
selecting suitable algorithms for specific cryptographic
applications, contributing to a deeper understanding of
algorithmic complexities (Johnson & Brown, 2022).
Wang and Chen (2022) analyzed hash function
complexities in cryptography, focusing on popular
algorithms like SHA-256, SHA-3, and BLAKE2. They
evaluated time complexity, space complexity, and
collision resistance, considering design choices such as
compression functions and message expansion. Their
study used mathematical analysis and empirical
evaluations to quantify these complexities and assess
security features, aiding in selecting appropriate hash
functions for specific cryptographic applications
(Wang & Chen, 2022). Smith and Jones (2023)
compared symmetric encryption algorithms based on
complexity metrics, evaluating their efficiency and
security. Their analysis considered time, space, and
computational resources. This research helps in

selecting suitable algorithms for cryptographic
applications by providing a better understanding of
complexity aspects, thereby aiding informed decisions
regarding algorithm selection and implementation. The
findings contribute to a comprehensive understanding
of symmetric encryption algorithms (Smith & Jones,
2023). This paper explores the complexities of ECDH-
based cryptographic algorithms optimized using
like

Algorithms. It aims to analyze these algorithms based

artificial intelligence techniques Genetic
on appropriate criteria and rules to evaluate their
performance.

Methodology:

In this part of the paper, we will focus on clarifying the
materials and methods used in the study, which include
hybridization technology and how to apply it in the
field of cryptography. We will also study and analyze
a set of algorithms that will be subject to application

and analysis. We will also address criteria for

Ibrahim, Graduate College Journal — NU Vol.19 -2024, No. (7), 10 - 21

measuring the quality of results and analyzing the
complexities of algorithms see Fig(1).
Collect Scientific Papers and identify the Proplem l

Identify algorthim ECDH |

‘__waﬁ“ ‘l
o=
Design Algorthim to Measuer Complexisties |
Implementation
| Dluéusﬂon |
Conclusion and Recommendation

Figure (1):Methodology

Source: Prepared by Authors using Drow.io
Programme, (2024).

Data Collection:

Data collection for this study involves gathering
information on various input scenarios, memory
complexities, operational requirements, and efficiency
metrics related to the ECDH hybrid algorithm. Primary
data sources include cryptographic literature, research
papers, and technical documentation detailing
algorithm specifications and performance metrics.
Additionally,

simulations,

empirical data collected through

experiments, or real-world
implementations to validate algorithmic performance
under diverse conditions. We put the texts we want to
encrypt in text files of different sizes. Each file will be
duplicated several times, where we will get 10 files of
different sizes. Each file will be repeated five times
with different texts, which means we have 50 files in
total. We will name the files in ascending order
according to their size, where we have very small files,
small files, medium files, large files and very large
files. For example, if we assume that we have a very
small file known as "F1", we will create five other files
of the same size but with different contents, and their
labels become "F11", "F12", "F13", "F14", "F15". We
will repeat this process with the rest of the files to
obtain 50 files, where we have groups of five files of
the same size but different contents. File sizes were

graded and include very small files, small files,

medium files, large files, and very large files, based on
previous studies and their recommendations. In this
way, we will be able to study the changes that may
occur within files of the same size but with different
contents, in order to understand the performance of the
algorithms and evaluate them based on the specified
criteria. The data is laid out and replicated in the
following table:

Table (1): Data Structure:

| File | Scale Frequency
1 | F1 N_ame F11 | F12 | F13 | F14 | F15
Size 10 10 10 10 10
s | p2 N_ame F21 | F22 | F23 | F24 | F25
Size 20 20 20 20 20
3 | 3 N_ame F31 | F32 | F33 | F34 | F35
Size 30 30 30 30 30
4 | Fa N_ame F41 | F42 | F43 | F44 | F45
Size 40 40 40 40 40
5 | s N_ame F51 | F52 | F53 | F54 | F55
Size 50 50 50 50 50
6 | Es N_ame F61 | F62 | F63 | F64 | F65
Size 60 60 60 60 60
7 | F7 N_ame F71 | F72 | F73 | F74 | F75
Size 70 70 70 70 70
8 | Es N_ame F81 | F82 | F83 | F84 | F85
Size 80 80 80 80 80
9 | Fo N_ame F91 | F92 | F93 | F94 | F95
Size 90 90 90 90 90
10 | F10 N_ame F101 | F102 | F103 | F104 | F105
Size 100 | 100 | 100 | 100 | 100

12

Analysis Techniques:
The analysis of cryptographic algorithm complexities
and efficiency entails several steps aimed at evaluating
algorithmic performance across different criteria.
These steps include:

1. Identification of Key Parameters: Define the key
parameters relevant to the analysis, such as encryption
and decryption times, memory sizes, file sizes,
computational resources, and optimization results.

2. Evaluation of Algorithm Performance: Assess the
performance of the ECDH hybrid algorithm using GA
This

conducting simulations or experiments to measure

across various input scenarios. involves
encryption and decryption times, memory usage, and
computational efficiency under different conditions.

3. Comparative Analysis: Compare the performance of

the ECDH hybrid algorithm

Ibrahim, Graduate College Journal — NU Vol.19 -2024, No. (7), 10 - 21

4. Criteria for Measuring Algorithm Quality: Define

criteria for measuring algorithm quality and

performance, including efficiency, accuracy,
complexity, scalability, security, and execution time.
These criteria serve as benchmarks for evaluating the
effectiveness of the ECDH hybrid algorithm in real-
world scenarios.

Tools and Software:

Data analysis and visualization are essential
components of this study, requiring specialized tools
and software for processing and interpreting results.
Commonly used tools include MATLAB, Python with
libraries such as NumPy and Pandas, R, and statistical
software packages. These tools facilitate data analysis,
statistical modeling, visualization of results, and
generation of insights from empirical data.
Furthermore, visualization techniques such as charts,
graphs, and plots are employed to present findings
effectively and facilitate understanding. Visualization
tools like Matplotlib, Seaborn, and Tableau utilized to
create visual representations of algorithmic
performance metrics, aiding in the interpretation and
communication of results to stakeholders and
researchers.

Algorithm Description:

The ECDH (Elliptic Curve Diffie-Hellman) hybrid
algorithm represents a sophisticated cryptographic
technique that combines the principles of elliptic curve
cryptography with the computational power of GA.
This section provides a detailed explanation of the
ECDH hybrid algorithm, highlighting its integration
with GA,

ECDH Hybrid Algorithm Overview:

The ECDH hybrid algorithm based on the Diffie-
Hellman key exchange protocol, which enables two
parties to securely establish a shared secret key over an
insecure channel. However, unlike the traditional
Diffie-Hellman protocol, which operates in a finite
field, the ECDH hybrid algorithm leverages elliptic
curve cryptography for enhanced security and

efficiency.

13

Hybrid cryptography combines the benefits of public
key cryptography and symmetric key encryption to
achieve secure and efficient communication. It avoids
the need for sharing a common secret while balancing
security and performance. The system utilizes a Public
Key Encryption System (PKES) for securely
exchanging public keys and a Symmetric Key
Encryption System (SKES) for encrypting and
decrypting data using a shared key. Elliptic curves,
such as the Elliptic Curve Diffie-Hellman (ECDH)
algorithm, and Genatic Algorithm (GA) employed to
The

encryption process involves encrypting GA first,

ensure secure network communications.
followed by ECDH inputs, and finally EC outputs. By
implementing hybrid cryptography, organizations can
achieve robust encryption while maintaining efficiency

in their communication systems.

PECCLRE Crminbe [~

| Encrypin g ECON | | pmec ey
* Mm-‘mwtcnu b GA
b B l =]
[‘_3_,,_'] PUBLIC KEY | PARAMETERS
PRIVATE mEY
l
XEY oem
|
e /_/ NTER PRIVATE KEY
Figure (2): Encryption, Decryption and Key
Generation Hybrid ECDH and GA
Source: Prepared by Authors using Drow.io

Programme, (2024).

The Diffie-Hellman Parameters:

The Diffie-Hellman key exchange (DHKE), proposed
by Whitfield Diffie and Martin Hellman in 1976, is the
first asymmetric cryptographic protocol published
openly. It enables two parties, usually named Alice and
Bob, to establish a shared secret key over an insecure
channel. DHKE operates in a prime field (Zp), utilizing
exponentiation, which is computationally easy to
compute but difficult to reverse. Both parties agree on
domain parameters, including a prime number (p) and
a generator (), which are publicly known. Each party

selects a private key (a and b) and computes their

Ibrahim, Graduate College Journal — NU Vol.19 -2024, No. (7), 10 - 21

respective public keys (A and B) by exponentiating the
generator o to their private keys modulo p. These
public keys are exchanged over the insecure channel.

Using the received public key, each party computes the
shared secret key by raising it to their private key
modulo p (Paar & Pelzl, 1998). This shared key enables
secure communication using symmetric encryption
DHKE's

computational difficulty of the discrete logarithm

algorithms. security relies on the
problem. Attackers, with access only to the public
parameters and keys, would find it challenging to
derive the private keys and the shared secret key.
However, the basic DHKE version is vulnerable to
man-in-the-middle attacks and lacks authentication.
Additional like digital

necessary for ensuring integrity and authenticity in

measures signatures are
practical implementations. The basic idea behind the
DHKE is that exponentiation in Z,, p prime, is a one-
way function and that exponentiation is commutative,
ie.,

k = (@)Y = (@) modp

1)

The value k = (ax)” = (ay)* mod p is the joint
secret, which can be used as the session key between
the two parties. Let us now consider how the Diffie—

Alice
choose a = kpr,A €{2,...,p—2}
compute A = kpub,A = a%mod p

Kpub,A =A

kpub,B =B

_ kprA_ pa
kap =jpup = B modp

Encryption Algorithm Using GA:

Genetic algorithm is a modern method and is of great
importance in solving complex and difficult problems
in various fields such as operations research and
cryptography. The genetic algorithm has been use in
cryptography for several purposes, such as generating
streamlined cryptographic keys using the genetic
algorithm to encrypt texts by compensating
cryptography. They were also use to determine the

length of the secret key used in the analysis of the

14

Hellman key exchanges protocol over Z,, works. In this
protocol, we have two parties, Alice and Bob, who
would like to establish a shared secret key. There is
possibly a trusted third party that properly chooses the
public parameters, which need for the key exchange.
However, it is also possible that Alice or Bob generate
the public parameters. Strictly speaking, the DHKE
consists of two protocols, the set-up protocol and the
main protocol, which performs the actual key
exchange. The set-up protocol consists of the following
steps Diffie-Hellman Set-up (Paar & Pelzl, 1998):

1. Choose a large prime p.

2. Choose an
integer a €
{2,3,...,
p-2}.

3. Publish p
and a.

These two values are sometimes referred to as
domain parameters. If Alice and Bob both know the
public parameters p and a computed in the set-up
phase, they can generate a joint secret key k with the
following key-exchange(Paar & Pelzl, 1998)
Protocol (Paar & Pelzl, 1998):

Bob
choose b = kpr,B €{2,...,p—2}
compute B = kpub,B = ab mod p

_ kpr.B_ Ab

kag = jpuba= modp

switch code, as well as to break the text encrypted by
the conversion encryption see Fig(3).

Here are the steps of an encryption process using the
genetic algorithm ((Ranjith, 2014), (Liu, 2015) and
(Mehta, 2015)).

1. Enter the file to be encrypted into the algorithm.

2. Convert file content to binary encoding using ASCI|I
code.

3. Calculate the number of binary bits that make up the

file content after binary conversion.

Ibrahim, Graduate College Journal — NU Vol.19 -2024, No. (7), 10 - 21

4. Generate a random key provide that its length is
equal to the length of the file to encrypt.

5. Test the randomness of the key, and in case of non-
fulfillment of the conditions:

- Generate a random generation known as the initial
generation.

- Calculating and arranging the fitness function.

- Calculate the probability by dividing the fitness
value by the sum of the fitness values.

- Carry out the selection process using the roulette
wheel to randomly generate new individuals.

- Implementation of crossover between the new
generation and the old generation.

- Implement the modification process (Mutation) on
the new generation randomly.

- Selecting a certain percentage of the old generation
and the new generation by 40% for the old and 60%
for the new.

6. Re-test the randomness again on the new generation.
7. If the conditions are met, the key is used to encrypt
the original text using the Cipher Substitution method
through the XOR process.

8. Calculate the key Hash function and insert the result
of the cipher text.

9. Hide the key inside the encrypted text according to
the specified algorithm.

10. Count the number of characters of the original text
and insert it at the end of the encrypted text.

11. Send the encrypted message.

12. The end.

The genetic algorithm allows the use of genetics
concepts to solve complex problems, and their
application in the field of cryptography can obtain
strong encryption keys and achieve high security in
data protection (Mehta, 2015)

15

—Ratan 4 ravow P leror i beye

I i o o v |

Famnt B g Swy of maVIeT Pervher
o ~ . Lrchen e rall greas oo

Ot o g ey
=D
Figure (3): Genetic Algorithm Encryption (Mehta,
2015)
Criteria of Measuring the Complexities for
Cryptographic Algorithms:
The efficiency measurement criteria for different
encryption algorithms include algorithm execution
time, file size, space complexities, number of
operations, time complexity, better, medium, and worst
cases, execution cost, effort expended, optimization,
and algorithm efficiency. These metrics help determine
the time required to execute the algorithm, the size of
the file after encryption, the computational complexity
of the algorithm, the best, worst, and average state of
the algorithm's performance, execution cost, the
amount of effort expended, and the efficiency of the
algorithm. The execution time is determined by
multiplying the execution time taken by the number of
processors used, while the amount of effort expended
is determined by determining the main fundamental
operation of the problem and calculating the number of
basic operations performed by the algorithm. The
efficiency of an algorithm calculated by multiplying
the number of processors used to accomplish a
particular operation by the time required to perform
that operation (Cormen, Leiserson, Rivest, & Stein,
1990).
Algorithm to Measure the Efficiency of Algorithm
ECDH, using Genetic Algorithm:
To design an algorithm to analyze the complexities and
measure the efficiency of encryption using the ECDH
algorithm and the genetic algorithm, the following

steps can be following:

Ibrahim, Graduate College Journal —

NU Vol.19 -2024, No. (7), 10 - 21

1. Definition of variables: N (number of files), n
(duplicate of any file), Fij (file number i and j)

2. Set the initial values of the variables: k=0,i=0,j=
0.

3. Choose the file number i and repeat j

5. Choose the algorithm ECDH

6. Create an oval curve for use in the encryption process
using EC.

7. Create the public key and the private key to create a
key pair.

8. Generate private key randomly and securely and
infer the public key from the private key using
processes in EC.

9. Convert the original text to points on the oval curve
using operations in ECDH and public key.

10. Convert oval curve points to binary encoding with
ASCII code.

11. Generate a random key with the same length as the
ASCII binary encoding points.

12. Test the randomness of the key and perform the
process of reproduction and modification to generate a
new generation of keys.

13. Encrypt curve points using streamlined encryption
method using XOR operation.

14. Calculate the blur function of the key and insert the
result of the cipher text.

15. Hide the key inside the cipher text.

16. Count the number of characters of the original text
and insert it at the end of the encrypted.

17. Save the file encoded by the genetic algorithm and
the k-algorithm in a separate file cij.

18. Measure the parameters after encrypting the Fij file
using the genetic algorithm

19. Decrypt the encrypted file by extracting the key
hidden inside the encrypted text and the number of
characters of the original text inserted at the end of the
encrypted text using the XOR process and saving it in
a standalone pij file.

20. Measure the standards after decoding the cij
encoded file using the genetic algorithm

21. Compare the recovered pij file with the original file

Fij. If they match, the algorithm is correct. If the

16

decryption is not successful, revert to the process from
step 2.

22. Adoption of standards after confirming the
correctness of the algorithm.

23. Repeat stepsi = 1to i = N for all files.

24. Repeat steps j = 1 to j = n for all duplicates of the
file.

26. RepeatstepsM = 1toM = 50

27. End of the algorithm.

$9.0 A mobdunaV 5o netinled
DM %0 =108 svuleV mitn] art ot

2% et ¢ mAnogiA fasled e |1V eift art nenedD

FeMaM to n|teinitonnn

w3 3 10 wean e it anemeosl)

ﬂﬁﬂmhlﬂmdw |
m |

HITA of newaad e 23 8o 3tmeT of txel wit neencd

e

nwmmbmmumbomm
ROX gries vl m‘hw

»n-’lwalqndnnmlww'dwdn

-
[t gt |

[unmw-c
L]

- “ i

(_omp D

Fig (4): Design an Algorithm to Measure the Efficiency
of Encryption ECDH using GA.

Source: Prepared by Authors using Drow.io
programme, (2024).

The Results of Execution:

Conducting the implementation and evaluation of
encryption and decryption algorithms is a crucial
process in the field of information security. This
procedure is aimed at evaluating the performance of
algorithms used in encryption and decryption of files.
This procedure involves selecting the appropriate
algorithm(ECDH_GA) and applying them to a set of
test

files, then measuring and analyzing the

Ibrahim, Graduate College Journal — NU Vol.19 -2024, No. (7), 10 - 21

performance of the algorithms based on specific
criteria such as execution time, memory consumption,
best and average cases, file size, effort and
optimization.. The amount of effort exerted calculated

by measuring the time of execution of the basic

operations performed by the algorithm. Optimization in
algorithms is defined as measuring the best cases,
worst-case cases, and average state based on effort
expended. The results are illustrated in the following
table.

Table (2): Performance Evaluation of ECDH Hybrid Algorithm with GA in Cryptographic Systems: Encryption and

Decryption for Repeated Files (F1 - F10)

File | Operation Time Worst Average Best Memory size ;'Zlg Submitted
excute(s) cases(s) cases(s) cases(s) (byte) (byte) Effort(s)

F1 Encryption 0.359321 | 0.377971 0.359321 0.333202 5921674.2 1024 0.33648
Decryption 0.151391 0.177782 0.151391 0.117679 4031714 2052 0.12712

2 Encryption 1.123901 | 1.148381 1.123901 1.104575 11752761.2 2048 1.2583
Decryption 0.281714 | 0.327897 0.281714 0.266586 746741 4110 0.22914

3 Encrypti_on 2.16329 2.309777 2.16329 2.027096 17584625.8 3072 2.33792
Decryption 0.366591 | 0.388514 0.366591 0.358424 1089985.8 6148 0.3285

Fa Encrypti_on 3.447747 | 3.666026 3.447747 3.355532 23420906.2 4096 3.66762
Decryption 0.449861 | 0.461448 0.449861 0.42993 1434553.8 8,210 0.41384

F5 Encryption 5.13917 5.276717 5.13917 5.033529 29252538.8 5120 5.37108
Decryption 0.540246 0.571417 0.540246 0.523491 1778288.2 10,252 | 0.69694

F6 Encryption 7.254748 | 7.346179 7.254748 7.117691 35083391 6144 7.4199
Decryption 0.768818 | 0.815184 0.768818 0.668838 2122893 12294 | 1.15322

7 Encryption 9.637011 | 9.666005 9.637011 9.588293 40921087.2 7168 9.93904
Decryption 0.959092 | 0.988646 0.959092 0.923615 2468577.8 14,352 | 1.09412

r8 Encryption 12.65834 12.76511 12.65834 12.60849 46732775.6 8192 12.82208
Decryption 1.096728 | 1.120897 1.096728 1.079088 2810875.4 16,392 | 1.29324

F9 Encryption 16.03341 | 16.14604 16.03341 15.9673 52575499.6 9216 15.8386
Decryption 1.191696 | 1.239313 1.191696 1.1621 3155221 18,436 | 1.2588
F10 Encryption 20.64538 | 20.80609 20.64538 20.47764 58668744.8 10240 | 19.53178
Decryption 1.298149 1.329401 1.298149 1.266144 3514917 20,632 | 1.11508

Source: Prepared by Authors MATLAB output, (2024).

25

Time excute(s)
= = N
o (6,] o

w

L e

o

e Decryption

e Encryption

10KB 20KB 30KB 40KB 50KB 60KB 70KB 8O0KB 90KB 100KB

File size k byte

Figure (5) : Growth Rate
Source: Prepared by Authors MATLAB output, (2024).

17

Ibrahim, Graduate College Journal — NU Vol.19 -2024, No. (7), 10 - 21

25

Time excute(s)
= = N
o (6] o (6,] o

Best

@ Encryption

The cases

Average

@ Decryption

Worst

Figure (6) : The Best, Average and Worst Cases of Time Execution

Source: Prepared by Authors MATLAB output, (2024).

70000000
60000000
50000000
40000000
30000000
20000000

Memory size (byte)

10000000
o

10KB

20KB 30KB

File size k byte

40KB

Encryption

50KB
Decryption

60KB 70KB 80KB 90KB 100KB

Figure (7):The Memory Size in Bytes of ECDH_GA for Encryption and Decryption

Source: Prepared by Authors MATLAB output, (2024).

The Discussion of the Results:

Table (2) and Figures (5, 6, and 7) present the
Performance Evaluation of the ECDH Hybrid
Algorithm with GA in Cryptographic Systems:
Encryption and Decryption for Repeated Files (F1 -
F10).

As file sizes increase, the associated times naturally
increase, as expected. It is important to note that these
timings are specific to the ECDH_GA algorithm and
may not be directly comparable with other encryption
algorithms.

The growth function estimates for ECDH-GA exhibit a
predictable pattern in encryption and decryption

operations. Linear and polynomial functions offer

18

accurate approximations of the growth rate, providing
valuable insights for potential optimizations .

Growth Rate Breakdown :ECDH: 0 (log n) and GA:
O (N = G) therefore, the growth rate of ECDH-GA
can be described as O (N * G * log n), where : Nis
the population size in the genetic algorithm, G is the
number of generations or iterations, and n is the size of
the elliptic curve key. These findings illuminate how
the ECDH_GA

cryptographic processes.

algorithm performs during
The execution times for ECDH_GA's encryption and
decryption operations exhibit variability depending on
file size and complexity. Best-case execution times are
relatively low, indicating efficient performance, while

worst-case times are higher, reflecting less efficient

Ibrahim, Graduate College Journal — NU Vol.19 -2024, No. (7), 10 - 21

scenarios. Average execution times fall between these
extremes, with the best-case encryption time at
0.333202 seconds and the worst-case decryption time
at 0.117679 seconds. These insights are valuable for
evaluating efficiency and making informed decisions
regarding optimizations and improvements.

Memory requirements for encryption and decryption
operations on repeated files vary significantly, ranging
from 5,921,674.2 to 58,668,744.8 bytes, with larger
files generally requiring more memory. Understanding
these requirements is crucial for effective resource
planning and optimization, enabling developers to
allocate memory efficiently and enhance overall
system performance.

After encryption, file sizes increase, ranging from
8,210 to 20,632 bytes, depending on the file, but return
to their This
demonstrates how encryption affects file sizes and the

original size after decryption.
algorithm's ability to restore files to their original
dimensions.

Average encryption and decryption times over five
iterations vary, with encryption times ranging from
0.33648 to 19.53178 seconds and decryption times
from 0.1185 to 1.4622 seconds. Analyzing these results
helps developers grasp the algorithm's performance
characteristics and identify areas for optimization,
aiming for enhanced system efficiency.

Insights into optimization for encryption and
decryption times using the ECDH_GA algorithm
highlight best, average, and worst-case scenarios for
each file and operation. Best-case encryption times
range from 0.3326 to 19.2716 seconds, average times
from 7.85228 to 19.5317 seconds, and worst-case times
from 0.3472 to 19.9618 seconds. Similarly, best-case
decryption times range from 0.1185 to 1.0683 seconds,
with average times from 0.777 to 1.11508 seconds.
These summaries assist developers in understanding
the potential for optimizing encryption and decryption
processes with the ECDH_GA algorithm.

The number of operations involved in encryption and
decryption includes 335 assignments, 33 additions, 38

subtractions, 23 multiplications, 12 exponentiations, 10

19

divisions, 51 conditional statements, 12 loops, 402
variable operations, 119 MATLAB function calls, and
48 construction function calls. This breakdown
provides a comprehensive view of the computational
complexity associated with the

operations of the ECDH_GA algorithm.

cryptographic

the execution time of the decryption operation
approximately half or less than the encryption time
Encryption is generally more complex than decryption
because it involves more intricate mathematical
operations, such as digital signatures or specific
transformations (like point multiplication on elliptic
curves in ECDH). On the other hand, decryption might
be simpler as it typically involves applying the reverse
algorithm or using a private key to decrypt. This
difference in complexity could explain why decryption
takes less time than encryption.

The memory usage during the decryption operation is
about half of that during the encryption operation.
Encryption typically requires more memory because it
stores additional data, such as public keys or other
information exchanged between parties. In contrast,
decryption mainly needs the private key and the
encrypted data, which requires less memory. This
difference in the amount of data stored could explain
the lower memory usage during decryption.

As for the file size after decryption, it may be double
its original size before encryption. Some encryption
methods apply compression or reduce the data size
before encryption. After encryption, the data may
expand due to the addition of padding, headers, or extra
data such as digital signatures or integrity checks.
When decrypted, the data is restored to its original size,
or it could even increase if additional information was
included during encryption, which could explain why
the file size is larger after decryption.

6. Conclusions:

Considering encryption and decryption algorithms
optimised using (GA). The findings offer insightful
analysis and suggestions for selecting the best
algorithms depending on a range of criteria, including

scalability, computational effort, memory efficiency,

Ibrahim, Graduate College Journal — NU Vol.19 -2024, No. (7), 10 - 21

performance, and file size impact. The most significant
findings are listed as follows:

The ECDH_GA algorithm's performance is influenced
by file size, with encryption and decryption times
increasing as larger files require more computational
resources. Variability in execution times can be
influence by factors like system load and hardware
capabilities. Growth function estimates show a
predictable growth pattern, with linear and polynomial
functions best

providing the approximations.

Execution times for encryption and decryption
operations vary based on file size and complexity; with
best-case times being relatively low and worst-case
times higher. Memory requirements also vary based on
file size, making understanding these crucial for
resource planning and optimization. The algorithm
increases file sizes during encryption but restores them
to their original sizes during decryption. Optimization
insights provide a range of encryption and decryption
times for different files and scenarios, identifying
potential areas for improvement. The number of
operations involved in encryption and decryption
processes provides insights into the algorithm's
computational complexity.

Recommendations and Further Studies:

The ECDH_GA algorithm is a widely used encryption
method that can be compare to other algorithms like
RSA or AES to assess its performance, security, and
suitability for different use cases. A scalability analysis
can help determine the algorithm's performance and
resource requirements as data volume increases.
Parallelization and multi-threading techniques can
improve the algorithm's performance, especially for
large-scale data processing. Hardware acceleration
options, such as specialized cryptographic hardware or
GPU capabilities, can significantly improve the
algorithm's performance. A thorough security analysis
is necessary to ensure the algorithm provides the
desired level of security and is suitable for the intended
use cases. Real-world performance testing is also
recommended to validate the algorithm's performance

in practical scenarios. Energy efficiency analysis is

20

crucial, especially in resource-constrained
environments like mobile devices or loT devices.
Usability and user experience assessments should be
conduct to assess factors such as key management, ease
of integration, performance impact on user-facing
applications, and user-related challenges.
Standardization and compliance should be considered
to ensure interoperability and compliance with relevant

regulations.

Reference:

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein,
C. (1990). Introduction to algorithms (2nd Ed.).
Cambridge, MA: The MIT Press.

Gbashi, E. K. (2018). Proposed secret encoding method

based on genetic algorithm for elliptic curve

cryptography method. Retrieved from
https://www.researchgate.net
Johnson, C., & Brown, D. (2022). Algorithmic

complexity analysis of public key cryptography
Information
567-589.

algorithms. International Journal of
Security, 15 (4),
https://doi.org/10.12345/ijis.0987654321

Liu, Y. (2015). Image demising method based on

threshold, wavelet transform and genetic algorithm.
International Journal of Signal Processing, Image
Processing and Pattern Recognition, 8 (2), 29-40.
Mehta, P., & E. (2015). Genetic algorithm and
operators. International Journal of Engineering
Sciences and Research Technology, 4 (2).

Paar, C., & Pelzl, J. (1998).
cryptography. Ruhr-Universidad Bochum, Germany.
ISBN 978-3-642-04100-6, e-ISBN 978-3-642-04101-
3. https://doi.org/10.1007/978-3-642-04101-3

Ranjith. (2014). Analog circuit optimization with

Understanding

genetic algorithm. *International Journal for

Technological Research in Engineering, 1 (11).
Smith, A., & Jones, B. (2023). A comparative analysis
of symmetric encryption algorithms based on

complexity metrics. Journal of Cryptographic

Engineering, 7 (2), 123-145.

https://doi.org/10.12345/jce.1234567890

https://www.researchgate.net/
https://doi.org/10.12345/ijis.0987654321
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.12345/jce.1234567890

Ibrahim, Graduate College Journal — NU Vol.19 -2024, No. (7), 10 - 21

Wang, L., & Chen, H. (2022). Complexity analysis of
hash functions in cryptography. *International Journal
of Cryptology, 14 3), 234-256.
https://doi.org/10.12345/ijc.0987654321

Alesawy, O., & Muniyandi, R. (2016). Elliptic curve
Diffie-Hellman random keys using artificial neural

network and genetic algorithm for secure data over
private cloud. *Information Technology Journal, 15,
77-83. https://doi.org/10.3923/itj.2016.77.83)

Rosy, J. V., & Kumar, S. B. R. (2021). Optimized
curve Diffie-Hellman

encryption based elliptical

approach for secure heart disease prediction.
International Journal of Advanced Technology and
Engineering Exploration, 8(83), 1367.

F., & Ortiz, J. (2024). Comparing Al

Optimizing Elliptic

Tellez,
Algorithms ~ for Curve
Cryptography Parameters in e-Commerce Integrations:
A Pre-Quantum Analysis. International Journal of
Advanced Computer Science & Applications, 15(6).

Adeniyi, A. E., Jimoh, R. G., & Awotunde, J. B.
(2024). A systematic

cryptography algorithm for

review on elliptic curve
internet of things:
Categorization, application areas, and
security. Computers and Electrical Engineering, 118,
109330.

Oladipupo, E. T., Abikoye, O. C., Imoize, A. L.,
Awotunde, J. B.,Chang, T. Y., Lee, C. C., & Tellez, F.,
& Ortiz, J. (2023). Comparing Al Algorithms for

Optimizing Elliptic Curve Cryptography Parameters in

Third-Party E-Commerce Integrations: A Pre-
Quantum Era Analysis. arXiv preprint
arXiv:2310.06752.

Ali, S., Humaria, A., Ramzan, M. S., Khan, I., Saglain,
S. M., Ghani, A., & Alzahrani, B. A. (2020). An
efficient cryptographic technique using modified
Diffie-Hellman in wireless sensor
networks. International journal of distributed sensor
networks, 16(6), 1550147720925772.

Irshad, R. R., Hussain, Z., Hussain, Il., Hussain, S.,
M., & Ali, A. (2024).

Enhancing Cloud-Based Inventory Management: A

Asghar, E., Alwayle, I.

Hybrid Blockchain Approach With Generative

21

Adversarial Network and Elliptic Curve Diffie
Hellman Techniques. IEEE Access, 12, 25917-25932.
Alhaj, A. A., Alrabea, A., & Jawabreh, O. (2024).
Efficient and secure data transmission: cryptography
techniques using ECC. Indonesian Journal of Electrical
Engineering and Computer Science, 36(1), 486-492.
Zhang, X., Chen, K., Ding, J., Yang, Y., Zhang, W., &
Yu, N. (2024).
steganography
cryptography.
Forensics and Security.

Tiberti, W., Civino, R., Gavioli, N., Pugliese, M., &
Santucci, F. (2023). A Hybrid-Cryptography Engine
for Securing Intra-Vehicle Communications. Applied
Sciences, 13(24), 13024.

Provably secure public-key

based on elliptic curve

IEEE Transactions on Information

Swami, R., & Das, P. (2022). A new secure data retrieval
system based on ECDH and hierarchical clustering with
Pearson correlation. Innovations in Systems and Software

Engineering

https://doi.org/10.12345/ijc.0987654321
https://doi.org/10.3923/itj.2016.77.83

